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We present a systematic experimental investigation of the onset of instability in the
flow of concentrated, shear-thinning, polyethylene oxide (PEO) solutions through rigid
microtubes (diameters ∼500 μm and 2840 μm). Micro-PIV measurements are performed
for the flow of PEO solutions (∼2000–6000 ppm in water) in the 500 μm tube to obtain
the magnitude of normalized velocity fluctuations, which show a jump at Reynolds number
Res as low as ∼10, indicative of an instability of the laminar flow, where Res = (DV ρ )/ηs

is the Reynolds number based on the viscosity ηs evaluated at the maximum shear rate
prevailing in the flow, D is the tube diameter, V is the cross-sectional average velocity, and
ρ is the fluid density. However, the ratio of peak to center-line velocity does not show any
significant shift from the laminar value. Experiments are also carried out to obtain friction
factor data for the flow of 2000–4000 ppm PEO solutions through a 2.84 mm glass tube.
Here the transition is inferred from the deviation of the experimental data from the friction
factor associated with the laminar flow obtained by fitting the shear-thinning rheology of
the polymer solution using the Carreau model. The data for transition Reynolds number
Res,t inferred from micro-PIV and friction factor measurements, for polymer solutions
of varying concentrations and for two different tube diameters, collapse reasonably well
to yield a scaling law Res,t ∼ [Es(1 − β )]−3/4, where Es = 4λsηs/ρD2 is the elasticity
number based on the fluid relaxation time λs estimated at the maximum shear rate of
the flow, and β is the ratio of solvent to (shear-rate dependent) total viscosity of the
polymer solution. The scaling exponent of −3/4 inferred from the present experiments
for concentrated polymer solutions is very different from the −1/2 exponent reported
in previous studies for relatively dilute solutions concerning the onset of elastoinertial
turbulence. This suggests that the instability observed in this study for concentrated
polymer solutions is qualitatively different from the instability leading to elastoinertial
turbulence in relatively dilute solutions. Our study further shows that even rectilinear
laminar flows of concentrated polymer solutions become unstable at a relatively low
Res ∼ 10, provided the fluid is both sufficiently shear thinning and elastic.

DOI: 10.1103/PhysRevFluids.4.083301

I. INTRODUCTION

The transition from laminar flow to turbulence in the flow of Newtonian fluids through pipes
and channels is dominated by nonlinear effects [1–3], and many fundamental questions underlying
this transition continue to be investigated even now. Experiments carried out in the 1970s [4–9] and
more recent experiments [10–13] have unambiguously demonstrated that addition of polymers to an
otherwise Newtonian fluid can cause early transition in both pipes and channels at Re0 significantly
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lower than that required for the Newtonian transition. Here Re0 is the Reynolds number based on
the zero shear viscosity, η0, of the polymer solution. This transition is believed to be caused by
both inertial and elastic effects, and hence the term “elastoinertial turbulence” is used to refer to
the flow state that ensues this instability. A recent theoretical study [14] has demonstrated that, in
sharp contrast to their Newtonian counterparts, tube and channel flows of viscoelastic Oldroyd-B
fluids are linearly unstable, and the predictions are in qualitative agreement with experimental
observations for the onset of elastoinertial turbulence. This theoretical study has shown that the
instability is driven by both inertia and elasticity of the polymer solution and, crucially, is not
dependent on the shear-thinning nature of the polymer solution. Experimental investigations on
systems with high elasticity numbers (E , defined as the ratio of the solution relaxation time to the
viscous diffusion timescale in the flow) exhibit transition at very low Reynolds number [15,16].
This transition, however, is achieved only with perturbed inlet conditions, and the instability is
believed to be driven by the elasticity of the polymer solutions because fluid inertia is unimportant
at such low Reynolds numbers. Recent experiments by Varshney and Steinberg [17] on the flow
of polyacrylamide solutions of relatively low concentrations ∼80 ppm, but with very high solvent
viscosity (∼100 times higher than viscosity of water), in a rectangular channel probed very high
elasticity numbers. The channel had two counterrotating cylindrical obstacles, and at low Re, the
friction factor for the flow was similar to that for laminar flow of a Newtonian fluid. Beyond a
certain Re ∼ O(1–10), the friction factor deviates from the laminar line, indicating an instability.
However, for high elasticity numbers, at a still higher Re, the friction factor again agrees with the
laminar prediction suggesting a relaminarization of the flow. The polymer concentrations in all
these studies were such that these solutions were weakly shear thinning or nonshear thinning. In
the absence of shear thinning, planar shear flows in channels and pipes of viscoelastic fluids are
known to be linearly stable (to infinitesimal disturbances) [18–21] at very low Reynolds number,
and it is currently believed that nonlinear mechanisms underlie such instabilities [22–24]. At low
Re, or in the absence of inertial effects, a linear instability is possible only in viscoelastic flows
with curved streamlines. Termed “purely elastic instabilities,” these were experimentally observed
in curvilinear geometries [25–27] such as Taylor-Couette flow, and the destabilizing mechanism is
the “hoop stress” present in curvilinear flows of viscoelastic fluids.

In sharp contrast, recent experimental investigations [28–30] using the flow of highly con-
centrated polymer solutions reveal that, even for straight geometries with no inlet perturbations,
transition can occur at Res as low as ∼50, if the fluid is sufficiently shear thinning in nature. Here
Res is the Reynolds number calculated based on the viscosity corresponding to the maximum shear
rate in the flow. Also, the posttransition flow behavior was observed to be quite different when
compared to that for a Newtonian fluid. Furthermore, theoretical studies by Wilson and co-workers
[31–33] have demonstrated the existence of a linear instability, driven by the shear-thinning nature of
the polymer solution, even in the absence of fluid inertia. Bodiguel et al. [28] investigated the flow
of highly shear-thinning partially hydrolyzed polyacrylamide (MW 18 × 106) solution at varying
concentrations through rectangular channels of width 152 and 170 μm. It was observed that the
flow becomes unstable at very low Res ∼ 10−4 and Wi ∼ 6. Here Wi is defined as the product of the
relaxation time of the polymer solution and the maximum shear rate of the flow. The authors argued
that the instability is driven by strong shear-thinning nature of the fluid, and hence, it was concluded
that inertia had negligible role on the onset of instability. Poole [29] performed laser doppler
velocimetry (LDV) measurements for the flow of concentrated, shear-thinning polyacrylamide
solutions through channels of half height 12.5 mm and tubes of diameter 100 mm and observed
a jump in the normalized velocity fluctuations, a signature of onset of transition, for Res > 40,
thereby indicating an instability which is driven by the shear-thinning and elastic nature of the fluid.
Crucially, the instability was triggered in the absence of any externally imposed perturbations.

Thus, a survey of the experimental literature suggests that instabilities in weakly shear-thinning
fluids at very low Re require a finite externally imposed perturbation, but the instabilities in strongly
shear-thinning fluids occur spontaneously. In the experiments of Poole [29], while there is a jump
in the normalized velocity fluctuations at the onset, which is similar to the Newtonian scenario,
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the velocity profile tends to get less flat in the posttransition regime, which is in contrast to the
Newtonian transition, wherein a more pluglike behavior is observed. Further, the instability driven
by elastic and shear-thinning nature of the polymer solution has been observed for tubes and
channels of larger dimensions of O(100) mm, and thus previous studies have probed the regime
of relatively low elasticity numbers ∼0.1.

One of the objectives of the present study is to probe significantly higher values of elasticity
numbers (∼2), by carrying out experiments in tubes of much smaller diameter (∼0.5 mm) compared
to previous studies. Also, the previous study [29] was performed for one polymer concentration,
and hence the observations were limited to only one elasticity number. Therefore, a systematic
investigation is needed to establish how the instability is affected by the elasticity of the polymer
solution. An important question that remains to be addressed is whether the instability leading to
elastoinertial turbulence [10] and the instability observed for concentrated solutions [28,29] are
distinctly different, or if they are a manifestation of the same instability in different (dimensionless)
parameter regimes. In this study, we address this question by carrying out experiments for the flow
of concentrated polymer solutions at varying elasticity numbers (by using different concentrations
and/or different tube diameters) thereby inferring the scaling law that relates the transition Reynolds
number and elasticity number. Previous studies on the onset of elastoinertial turbulence [13] have
shown an exponent of −1/2 that relates the Reynolds number and the dimensionless product of
elasticity number and the ratio of polymer and total solution viscosity, viz., E (1 − β ).

While prior studies have used PIV/LDV measurements to infer the transition in shear-thinning
polymer solutions, it is often useful to corroborate the detection of the onset of instability with
a different and independent methodology. To this end, in this study, we carry out pressure drop
measurements for the flow of 2000–4000 ppm PEO solutions through a 2.84 mm glass tube. To
infer the onset of instability, we first compute the expected relation between friction factor f and
Re for the laminar flow of a shear-thinning Carreau fluid in a tube. This is then compared with
experimental observations, and the Re at which the experimental data deviates from the theoretical
laminar prediction is taken to be the onset of transition. We also use dye-stream visualization to
corroborate our predictions. Hence, in the present study, we aim to unambiguously detect the onset
of the instability in the flow of concentrated polymer solutions through microtubes.

The rest of the paper is organized as follows: Sec. II describes the experimental protocol used;
Sec. III describes the micro-PIV observations for the flow of concentrated polymer solution through
microtubes; and Sec. IV deals with friction factor measurements and the dye stream visualization
experiments to detect the transition. Section V provides a critical discussion of our results, and
Sec. VI ends with the salient conclusions of this study.

II. EXPERIMENTAL PROTOCOL

A. Preparation and characterization of PDMS tube

To fabricate tubes of diameters less than 1 mm, we create a tubular bore in a PDMS block as
described below. A copper wire is held straight using a screw mechanism, and a well is created
by using double sided tapes. A mixture of elastomer base (85%) and cross-linker (15%) is mixed
and degassed and then poured into the rectangular well. The PDMS well containing the wire as
the template is then cured at 100 ◦C for 12 h in a preheated oven. After curing, the PDMS block is
swelled in toluene for 3 h. The copper wire is then carefully removed from the PDMS block leaving
a hollow tubular bore. The PDMS block is then deswelled at low temperature in a refrigerator.
The diameter of the bore created is measured using a microscope and a microscale is used for the
calibration of the same. This method of preparation of the microtube is similar to the one used in
our earlier work [13].

The same PDMS mixture is simultaneously poured in rectangular wells made of microscopic
glass slides and cured at 100 ◦C for rheological characterization. Small-amplitude oscillatory
experiments are performed on the rectangular PDMS block to obtain the shear and loss modulus
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(a) (b)

(c)

FIG. 1. (a) Shear and loss moduli of PDMS used for tube fabrication. The shear modulus is found to be
more than 5 × 105 Pa, and hence the tube wall can be considered as rigid. (b) Shear and loss moduli for
6000 ppm polyethylene oxide solution. The data are fitted to the single-mode Maxwell model to obtain the
longest relaxation time of the solution. (c) Fitting of 5000 ppm PEO solution oscillatory data into a multimode
Maxwell model. A spectrum of four relaxation times is obtained with λ1 = 3.33 s, λ2 = 1.11 s, λ3 = 0.33 s,
and λ4 = 0.04 s. Average of the spectrum of relaxation times is 1.2 s.

of the prepared cross-linked PDMS block as shown in Fig. 1(a). It is observed that the shear
modulus measured is more than 5 × 105 Pa, and hence the tube can be considered rigid [13,34,35].
For these microtubes we observed that the transition Ret for the flow of pure water is very close
to the well-documented transition Ret of 2000. For friction factor measurements, a glass tube of
2.84 mm diameter was used. For micro-PIV measurements, a glass tube is not suitable because of
the large mismatch in refractive index of glass (RI ∼ 1.5) when compared to the fluid refractive
index (RI ∼ 1.3). The refractive index of PDMS (RI ∼ 1.4) is closer to the fluid refractive index
and hence is more suitable for micro-PIV measurements.

B. Preparation and characterization of polymer solution

Required amount of polyethylene oxide in powder form (MW 8 × 106) is added to deionized
water and the resulting mixture is stirred thoroughly at 25 ◦C with the help of a magnetic stirrer
at 50 rpm for 24–48 h until complete dissolution. Aggregation of PEO solution was observed
while mixing the solution. However, the aggregation disappeared after mixing for 24–48 h. The
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TABLE I. Rheological properties of various polymer solutions used
in the experiments: (concentration-dependent) relaxation time (λ), zero-
shear viscosity (η0), and shear-thinning exponent (n) defined as η ∼ γ̇ −n.

Cp (ppm) λ (s) η0 (Pa s) n

2000 0.26 0.022 0.25
3000 0.45 0.077 0.38
4000 1.61 0.25 0.46
5000 2.00 0.45 0.49
6000 5.56 0.90 0.52
6500 9.20 1.95 0.57

beaker is covered with parafilm during the mixing process to avoid evaporation. Viscosity of the
prepared solution was measured after shearing. There was no change in the viscosity measured
before and after the shearing process, hence it is concluded that there is no shear degradation due to
the mixing process. The solution thus prepared is used within 24 h of preparation time. The polymer
solution is characterized using a rheometer with a concentric cylinder geometry. Small-amplitude
oscillatory shear experiments are performed to obtain the shear and loss moduli of the prepared
polymer solution as shown in Fig. 1(b). The data are fitted to a single-mode Maxwell model to
obtain the longest relaxation time of the polymer solution. Within the frequency range probed, the
data is also fitted using a four-mode Maxwell model, as shown in Fig. 1(c). Table I contains the
summary of the various polymer solutions used and their rheological properties. The relaxation
time reported in this table is obtained after averaging the data from three different experiments for
storage and loss moduli.

C. Shear thinning of polymer solution and purely elastic instability

The polymer solution is characterized by measuring its viscosity using the concentric cylinder
geometry of a rheometer. Figure 2 shows the normalized viscosity plots for PEO solutions at

(a) (b)

FIG. 2. (a) Normalized viscosity of 2000 ppm, 3000 and 4000 ppm, and (b) normalized viscosity of 5000
ppm, 6000 ppm, and 6500 ppm PEO solutions as a function of shear rate as measured by using the concentric
cylinder geometry. η is the shear-rate dependent viscosity of the polymer solution, and η0 is the zero shear
viscosity. The values of η0 for 2000 ppm, 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, and 6500 ppm solutions
are 0.022, 0.077, 0.25, 0.45, 0.90, and 1.95 Pa s, respectively.
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FIG. 3. Comparison of stress fluctuations at low and high shear rates depicting large stress fluctuations
in the unstable flow (at high shear rates) of the concentric cylinder flow geometry as compared to the stable
regime (at low shear rates). Here σ is the instantaneous stress and σm is the mean of stress over time.

different concentrations. The viscosity is normalized with the zero-shear viscosity of the respective
polymer solution. It is observed that the solution continuously shear thins up to a certain shear
rate, beyond which there is an apparent jump in the measured viscosity. The apparent jump in
the polymer viscosity may be attributed to an elastic instability arising due to curved streamlines
in the concentric-cylinder geometry [25,26,36]. The Reynolds number for the concentric cylinder
geometry is obtained from the expression [ωR1(R2 − R1)ρ]/η where ω is the angular speed, R1

and R2 are the diameters of the inner and outer cylinders, ρ is the fluid density, and η is the fluid
viscosity, and transition is observed for the concentric cylinder geometry at a Reynolds number ∼25.
The radii of the inner and outer cylinders are 14 mm and 15 mm, respectively. We observe that the
critical Weissenberg number Wi for the onset of instability is Wi ∼ 10, where Wi is defined as the
product of the shear dependent relaxation time and the shear rate at which the experiment is being
performed. We also evaluated the Pakdel-McKinely parameter [37] at the onset of the instability
for the concentric cylinder geometry used in our experiments. This parameter turns out to be 3.5
in our case, while the theoretical estimate for the onset [37] is around 8.3. The slight discrepancy
between the theoretical and experimental values could be attributed to the uncertainty in inferring
the shear-dependent relaxation times at higher shear rates.

Temporal fluctuations in measured stress corresponding to a constant shear rate is a signature of
instability in a rheological measurement. We observe that the temporal stress fluctuations is much
higher for high shear rates where the flow has become unstable as compared to a lower shear rate
where the flow is stable, as measured by the rheometer in a concentric cylinder geometry (Fig. 3).
To corroborate the observed phenomena, we compare the measurements of viscosity with varying
shear rates using a concentric cylinder geometry and a cone-and-plate geometry. It is observed
that the variation of viscosity with shear rate matches for the two geometries up to a certain shear
rate, beyond which the concentric cylinder measurements show an apparent jump in the measured
viscosity. However, the cone and plate geometry shows a continuous decrease in polymer viscosity
with increasing shear rate as shown in Fig. 4(a). This could be because the instability due to curved
stream lines might occur at higher shear rates than probed in our experiments.

Since polymer solutions show significant shear thinning with increasing shear rates, the relax-
ation time of the polymer solution can also be expected to be strongly dependent on the shear rate. To
estimate the shear-rate dependence of relaxation time, we measured the first normal stress coefficient
using the cone and plate geometry and calculated the shear-rate dependent relaxation time using the
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(a) (b)

FIG. 4. (a) Comparison of viscosity measured using the concentric cylinder and cone-and-plate geometries
for 4000 ppm PEO solution and (b) shear-rate dependent relaxation time calculated using the first normal stress
coefficient by using the cone-and-plate geometry. Here the cone angle is 1◦ and radius is 20 mm.

expression λ = N1/(ηγ̇ 2), where λ is the relaxation time, N1 is the shear-rate-dependent first normal
stress difference, η is the fluid viscosity at the relevant shear rate (γ̇ ) as shown in Fig. 4(b). Meister
and Biggs [38] have shown that the variation of the first normal stress difference with shear rate
can exhibit three distinct regions with different slopes. These regions are identified as the diffusion
controlled linear region, a regime dominated by the entanglement-disentanglement process, and a
third region where aggregation of polymer molecules occurs. An abrupt change in the slope for
the first normal stress coefficient occurs when there is a crossover from one regime to another.
This change in slope is seen in Fig. 4(b) could be attributed to an onset of entanglement in the
solution. Similarly, Ferry [39] also discusses two distinct regimes in the variation of first normal
stress difference with shear rate. It is important to quantify the shear-thinning nature of viscosity of
the individual polymer solutions. This is estimated by fitting the data in the shear-thinning region
using a log-log plot of viscosity versus shear rate. The viscosity varies with shear rate according to
the expression η ∼ γ̇ −n, where n is the magnitude of the shear-thinning slope. In this work, shear
rates in the range of 10 s−1 to 100 s−1 are used to estimate the shear-thinning exponent n. Table I
summarizes the key rheological features of the polymer solutions used.

Figure 5 shows the dependence of zero shear viscosity and zero shear relaxation time with
the concentration of the polymer used. It is observed that zero shear relaxation time scales with
concentration as η0 ∼ c3.6 and zero shear relaxation time scales with concentration as λ ∼ c3.7.
Earlier studies [40,41] have shown that the zero shear viscosity of concentrated polymer solutions
scales as η0 ∼ c3.4. The relaxation time value for 2000 ppm is not included to obtain the scaling
relaxation of dependence of zero shear relaxation time with concentration because it is likely that
at that concentration the normal stresses in the system might be comparable to the instrument’s
resolution limits.

III. MICRO-PIV ANALYSIS OF INSTABILITY THROUGH MICROTUBES

For dilute polymer solutions with very high solvent viscosity (i.e., Boger fluids), it is well
known that for curved geometries, instability occurs at very low Reynolds number [25,26,36,42,43],
which is driven by the hoop stress present in curvilinear viscoelastic flows [26]. However, it is
widely believed that the onset of transition in straight tubes and channels occurs only at Re >

500 [10]. Here we carry out micro-PIV analysis to measure the magnitude of normalized velocity
fluctuations in the flow of PEO solutions in the microtube of diameter ∼540 μm. Use of a smaller
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(a) (b)

FIG. 5. (a) Dependence of zero shear viscosity on concentration of PEO used. (b) Dependence of zero
shear relaxation time on concentration of PEO used.

diameter tube enables us to probe higher values of elasticity numbers ∼1. The flow is seeded with
fluorescent microspheres of diameter ∼3 μm. The Stokes number, St, calculated by the expression
St = (ρpd2V )/(18μD) for the flow experiments is less than 0.1; hence we may assume that the
seed particles faithfully follow the fluid streamlines. Here ρp is the particle density, d is the particle
diameter, V is the cross-sectional average velocity of the tube flow, μ is fluid viscosity, and D is
the tube diameter. A laser (15 mJ, Quantel) is used to illuminate the microtube and a CCD camera
(Powerview, 8MP) is used for capturing the double-frame images. The time between two frames is
kept between 1 and 30 μs. A filter algorithm is used to filter the out-of-plane particles illuminated
by the laser. Images are processed using the Insight 4G software which uses a cross-correlation
method for getting velocity vectors. The images are processed in two different ways. To obtain
the average velocity distribution at various radial locations, the mean instantaneous velocity over a
specified time interval is further averaged over three axial locations. The error bar is an indication
of the standard deviation in the velocity across the time interval and over the three different axial
locations. We also characterize the extent of velocity fluctuations at the center line of the tube.
Center-line velocity at a given time instant is calculated by measuring the velocity at different axial
locations (at that time instant) of the tube and then taking their average. Then the standard deviation
of the center-line velocity at various time instances about their average is obtained. The standard
deviation is normalized by the time averaged velocity. The use of center-line velocity for calculating
velocity fluctuations minimizes possible errors due to tube curvature and refraction. All micro-PIV
measurements are taken 120 diameters away from the tube entrance to avoid any entrance effects.
It is further ensured that the polymer solution prepared is used within 24 h of preparation. This is
done in order to avoid any degradation in the prepared polymer solution. The temperature in our
experiments is maintained at 25 ◦C.

Figure 6(a) is a comparison of velocity fluctuations obtained for different concentrations as a
function of Reynolds number Re0 based on the zero-shear viscosity of PEO solutions. A jump
in the magnitude of normalized velocity fluctuations is considered as an indicator of the onset
of transition, and the corresponding Reynolds number is denoted as Re0,t , similar to the earlier
experiments of Poole [29]. As already established, the shear-thinning behavior is different for
different concentrations of polymer used. It is observed that increasing the concentration of the
polymer solution decreases the transition Reynolds number Re0,t . Figure 6(b) is a comparison
of velocity fluctuations obtained for different concentrations as a function of Reynolds number
Res based on the viscosity at the maximum shear rate in the flow. The onset of transition at the
corresponding Reynolds number is denoted as Res,t . Here the maximum shear rate in the tube is
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(a) (b)

FIG. 6. Onset of instability for PEO solutions of different concentrations: (a) Reynolds number Re0 is
calculated using the zero shear viscosity of the individual PEO solutions. (b) Reynolds number Res is calculated
using the viscosity corresponding to the maximum shear rate in the flow.

given by γ̇ = 8V/D, where V is the cross-sectional average velocity and D is the tube diameter.
Further, the velocity fluctuations monotonically increase after the onset of transition. We also
observe that the critical Weissenberg number, Wis, at which the normalized velocity fluctuations
show a jump in the micro-PIV analysis (and at which the friction factor shows a deviation form
the laminar line, as discussed in the following section) varies from Wis ∼ 15 to Wis ∼ 25 at the
onset of transition for all the concentrations of PEO solutions used in the study. Here Wis = γ̇ λs,
where γ̇ is the shear rate prevalent in the tube at the corresponding Res and λs is the relaxation time
at the corresponding shear rate. It is interesting to note that earlier observations [29,30] for larger
diameter pipes observed similar critical Wi ∼ 10. Hence, the transition observed could be due to
a combination of the elastic forces and the shear-thinning nature of the polymer solution used as
conjectured in Ref. [29]. A comparison of the velocity profile shown in Fig. 7 for laminar (low Res)
and transitional regimes (high Res) for the instability observed illustrates that the posttransition

(a) (b)

FIG. 7. Comparison of laminar velocity profiles in the laminar and unstable regimes. (a) Res ∼ 1.1
corresponds to the laminar regime for the flow of 6000 ppm PEO solution, and (b) Res ∼ 90 corresponds
to the unstable regime. Vloc is the local velocity, and Vavg is the cross-sectional average velocity in the tube.
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velocity profile matches with the laminar velocity profile predicted by using the Carreau model for
shear-thinning fluids [Fig. 7(b)]. This is in contrast to the Newtonian transition [13,44], where we
observe a more pluglike behavior in the turbulent regime. It becomes difficult to obtain data close
to the wall owing to the curvature effects near the wall of the microtube.

IV. FRICTION FACTOR MEASUREMENTS FOR THE DETECTION
OF THE ONSET OF THE TRANSITION

We obtain the friction factor variation with Reynolds number for the flow of concentrated
(2000, 3000, and 4000 ppm) PEO solutions in a glass tube of diameter D = 2.84 mm by the
measuring pressure drop between a pressure tap located at a distance ∼120D from the inlet and
the tube exit where the pressure is atmospheric. The friction factor is related to the pressure drop
as f = (	PD)/(2LV 2ρ), where f is the Fanning friction factor, 	P is the pressure drop measured
across the length, L, V is the cross-sectional average velocity, and ρ is the fluid density. The pressure
tap is placed at 120D length from the inlet of the tube so as to ensure fully developed flow for
pressure measurement. Pressure measurements were first performed for pure water and the Fanning
friction factor data obtained matched with the standard friction factor data for the flow through tubes
for a Newtonian fluid in both laminar and turbulent regimes.

The laminar f -Re relation for a shear-thinning polymer solution is obtained by using the Carreau
model for shear-thinning fluids as described below. The governing momentum equations, under the
steady, fully developed, and unidirectional flow assumptions, are solved with the Carreau model for
fluid viscosity:

η = (η0 − η∞)

[1 + (λγ̇ )2]
1−m

2

+ η∞, (1)

where η0 is the zero-shear viscosity, η∞ is the viscosity at infinite shear rate which is taken as the
viscosity of pure water, λ is the relaxation time, and m is the power-law index in the Carreau model.
The zero-shear viscosity is taken from our rheological characterization. The governing equations
are nondimensionalized using the following scales: η0 for viscosity, 2V/D for strain rate, D for
length and displacement, and f ρV 2/2D for pressure drop. The resulting nondimensional governing
equation, after substituting the Carreau model and integrating the momentum equation once, is given
by

[1 + (2ERes

∗)2]

m−1
2 
∗ = −r∗ f Re0/16. (2)

Here the elasticity number is defined as E = (λη0)/ρ(D/2)2, 
∗ = dV ∗/dr∗ is the nondimensional
strain rate, f is the friction factor, m is the power law index, and Re0 is the Reynolds number based
on zero-shear-rate viscosity. For fixed values of Re0, E , and m, an initial guess of f is provided,
and the above equation is used to obtain the local shear rate 
∗ at different radial locations r∗.
The velocity profile is then obtained by numerical integration of the local shear rate, from which
the (nondimensional) cross-sectional average velocity is computed. Since velocities are made
dimensionless using the cross-sectional average velocity, the computed average velocity must be
unity if the initial guess for f is correct. We then use a Newton-Raphson method to iterate over the
values of f until the dimensionless average velocity becomes unity (within a specified tolerance).

Figure 8 shows a comparison (in the laminar regime) of the velocity profiles obtained from
micro-PIV measurements and the theoretical prediction from the Carreau model for the 3000 ppm
solution. Here the Carreau model fitting parameters (η0, η∞, λ, and m) are taken from rheological
measurements. The velocity profile obtained from Carreau model matches very well with that
from micro-PIV measurements. Table II shows the fitting parameters used to obtain the laminar
friction factor line from Carreau model for shear-thinning fluids. Here the value of E is obtained
from rheological measurements and m is used as a fitting parameter to obtain the laminar line
for shear-thinning fluids used in our experiments. The shear-rate-dependent viscosity obtained
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FIG. 8. Comparison of laminar velocity profiles for 3000 ppm PEO solution at Re0 = 0.4, taken from
micro-PIV measurements and from the solution of Carreau model for shear-thinning fluids. Vloc is the local
velocity and Vavg is the cross-sectional average velocity in the tube.

from rheological measurements is used to calculate shear-rate-dependent Res. The m and λ values
obtained by fitting the rheology data with the Carreau model did not predict the experimentally
measured friction factors as accurately as when the parameters of the model are directly fitted to
predict the friction factor in the (stable) laminar regime. Our objective below is to infer the onset
of instability by carefully looking at deviations from the theoretical (laminar) prediction for the
Carreau model, and hence we directly fit the Carreau model constants m and λ to predict the friction
factor. For a given m, λ, and E , this procedure is repeated for a range of Re to obtain the f -Re
relation for a shear-thinning Carreau fluid.

Figure 9 shows friction factor data for the 2000, 3000, and 4000 ppm PEO solutions as a function
of Re for flow through a 2.84 mm glass tube. The deviation in the friction factor data across different
runs is very small, and the symbols contain errors bars which in turn are very small to be visible. The
friction factor data deviate from the laminar value at Re0 ∼ 80 for 2000 ppm, Re0 ∼ 4 for 3000 ppm,
and Re0 ∼ 1.5 for 4000 ppm. Thus, the deviation of friction factor from the expected laminar
value further demonstrates the onset of instability in the flow of concentrated polymer solutions.
Dye-stream visualization experiments are performed to corroborate the observed instability, with
an added objective of demonstrating the instability at a higher polymer concentration. Obtaining
pressure drop data for 5000 ppm was quite difficult due to the large response time of the pressure
sensor. Hence, we opted to demonstrate the instability at 5000 ppm using dye-stream visualization.
A dye stream of diameter ∼100 μm is injected into the microtube of diameter 540 μm at the
tube inlet. The flow is considered to be laminar if the dye stream appears as a straight line in
the microtube [34,35,45], and the break-up of the dye stream is considered to be a signature of

TABLE II. Concentration-dependent relaxation time (λ), Elasticity (E ), zero shear viscosity (η0), shear-
thinning exponent from rheology (mrheology), and shear-thinning exponent used for fitting the friction factor
data in the laminar regime with the Carreau model (mCarreau).

Cp (ppm) λ (s) E η0 (Pa s) mrheology mCarreau

2000 0.26 2.39 0.022 0.25 0.15
3000 0.45 15.62 0.077 0.38 0.25
4000 1.61 183 0.25 0.46 0.40
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(a) (b)

(c) (d)

(e)

FIG. 9. Friction factor charts for the flow of concentrated PEO solutions through a 2.84 mm glass tube.
(a) Laminar friction factor line obtained by using Carreau model, by taking shear-thinning exponent m = 0.35
and elasticity E = 400, compared with the Newtonian laminar line. (b) Friction factor data for 2000 ppm,
(c) 3000 ppm PEO, and (d) 4000 ppm PEO solutions. The solid lines in panels (b), (c), and (d) represent the
laminar friction data obtained by using the Carreau model for shear-thinning fluids and dotted vertical line is
an indicator of the the onset of transition. (e) Friction factor dependence on Res i.e., when Reynolds number is
based on the maximum shear rate prevalent in the experiments.
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(a)

(b)

FIG. 10. Snapshots of the dye stream visualization experiments in the laminar and posttransition regimes.
Dye stream appears as a straight line at Res ∼ 8 in panel (a), while panel (b) shows the breakage of dye stream
at Res ∼ 12.

the transition. The flow is visualized using a microscope (Olympus, CKX41) and illuminated using
a halogen lamp. The microtube is magnified by using a 4× microscope objective. A high-speed
camera (IDT, O10) is used to capture images at 1000 fps and 9.2 MP resolution. For a 5000 ppm
PEO solution, the dye stream breaks up at Res ∼ 10 (Fig. 10), which is in close agreement with our
micro-PIV results.

V. DISCUSSION

To understand the effect of elasticity of the polymer solution on the instability in pipe flow,
experiments are carried out systematically at significantly higher values of elasticity numbers
in comparison to previous studies [29]. The nature of instability onset is best understood by
investigating how the Reynolds number scales with the elasticity number, as was done for the
onset of elastoinertial turbulence at low elasticity numbers in earlier studies [13]. This scaling will
also help us to distinguish between the instability observed in this study for concentrated solutions
with the onset of elastoinertial turbulence observed in earlier studies for comparatively dilute
solutions. When the micro-PIV and friction factor data are plotted for the variation of transition
Re0,t with E0, respectively, the transition Reynolds and elasticity number based on zero shear
viscosity and zero shear relaxation time, a very good data collapse is observed with a scaling law
Re0,t ∼ [(E0(1 − β )]−0.65 as shown in Fig. 11(a). While β is very small for concentrated polymer
solutions, we use this factor so as to be consistent with the previous scaling for the onset of
elastoinertial turbulence [13]. After correcting for the shear-dependent viscosity and relaxation time,
the data corresponds to a scaling of Res,t ∼ [Es(1 − β )]−3/4 as shown in Fig. 11(b). Here Es is the
elasticity number defined based on viscosity and relaxation time corresponding to the maximum
shear rate in the flow. For the flow of dilute polymer solutions through microtubes, where shear
thinning is negligible, and where both inertia and elasticity play an equally important role, the
dependence of transition Re0,t with elasticity number showed a scaling law dependence of Re0,t ∼
[E0(1 − β )]−1/2 [13]. The substantial difference in scaling exponents for the two instabilities
suggests that a qualitatively different mechanism of instability must underlie the transition observed
for concentrated, shear-thinning polymer solutions. It is interesting to note that if inertia in the fluid
is not important for the observed instability, Res should scale as 1/Es, since Wis will be a constant
for such an instability. This is because the fluid density ρ is not a relevant parameter in the absence
of inertia. The observed scaling exponent of −3/4 (within the dimensionless range of parameters
probed here) for concentrated polymer solutions is quite close to the theoretically expected exponent
of −1, thus suggesting that fluid inertia may be less relevant to the observed instability, unlike in the
case of elastoinertial turbulence, where fluid inertia and elasticity are equally important. More data
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(a)

(b)

FIG. 11. (a) Variation of transition Reynolds number, Re0,t , with elasticity number when the Reynolds
number is calculated using the zero shear viscosity and (b) transition Reynolds number, Res,t , with elasticity
number when Reynolds number and elasticity number, Es, are calculated at the maximum shear rates present
in the flow. Also shown are results from Poole [29] and Chandra et al. [13].

in the range of E lower than those probed in this study are needed to unambiguously determine the
exponent in the limit E � 1.

VI. CONCLUSIONS

In conclusion, in this work, using micro-PIV, friction factor and dye stream visualization
experiments, we provide additional evidence of the instability driven by shear thinning and the
elastic nature of the fluid, thereby corroborating and augmenting the earlier observations of
Refs. [28–30]. By carrying out experiments in tubes of smaller diameters, the present study probes
regimes of elasticity numbers much higher than those probed in previous work. Our observations
point to the presence of an instability which is qualitatively very different from the Newtonian
transition and the elastoinertial transition in relatively dilute polymer solutions. To demonstrate
that the observed instability is qualitatively different from the onset of elastoinertial turbulence, we
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inferred the scaling relation between the transition Reynolds number and elasticity number, using
data from solutions of different polymer concentrations and tubes of two different diameters. This
scaling relation is markedly different from that reported for the onset of elastoinertial turbulence
and further points to the relatively minor role of fluid inertia in causing this transition. The present
results also give rise to some open questions which need to be addressed in future studies. While
the shear-thinning nature of the fluid plays a significant role on the onset of instability, the role of
elasticity is equally important. Would the instability still persist if the elasticity of the polymer
solution is increased without increasing the shear-thinning nature of the fluid, for instance, by
using (as in Ref. [17]) relatively dilute solutions in solvents of very high viscosity? A systematic
investigation probing such a regime is necessary to obtain a complete understanding of the instability
in dilute and concentrated polymer solutions.
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