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We report results from a linear stability analysis of Newtonian plane Poiseuille flow

through a deformable linear elastic channel with an unrestrained boundary wherein the

deformable wall is not rigidly bonded to a substrate, and is free to undergo motion. The

objective of this study is to address the experimental observations of instabilities for this

configuration (S. S. Srinivas and V. Kumaran, J. Fluid Mech., 822, 267-306, 2017). We an-

alyze the role of an unrestrained deformable boundary on the stability of channel flow using

both asymptotic and numerical methods. Our results show that, when solid to fluid layer

thickness ratio is O(1), both wall modes (whose critical Reynolds number, Rec ∝ G3/4;

G being the shear modulus of the solid) and inviscid modes (whose Rec ∝ G1/2) are

significantly destabilized by the presence of an unrestrained boundary when compared to

channels with completely bonded deformable boundaries. In agreement with experimen-

tal observations, the eigenfunctions corresponding to both these unstable modes exhibit a

pronounced asymmetric behaviour, thereby highlighting the influence of the unrestrained

deformable boundary on the stability of the flow. The asymptotic predictions for the wall

mode instability are shown to be in excellent agreement with our numerical results. How-

ever, for solid to fliud thickness ratio ∼ 7.7 (used in the aforementioned experiments),

our results show that the reduction in the critical Reynolds number due to the unrestrained

boundary is only moderate; we provide possible reasons for the same.
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I. INTRODUCTION

Flow past deformable surfaces has been studied extensively in the past few decades since

Kramer1,2 explored the possibility of using compliant coatings to delay the transition to turbu-

lence in boundary-layer flows in the early 1960’s. However, the study of internal flow through

deformable tubes and channels has gained attraction in the mid-1970’s7,8 due to its relevance to

flow of biological fluids in deformable conduits, such as the flow of blood in blood vessels30, the

flow of air in the respiratory system36. More recently, advancements in the field of microfluidics32

and availability of polymer-based materials (such as polydimethyl siloxane, abbreviated PDMS)26

have demonstrated the use of soft deformable surfaces for the fabrication of lab-on-chip devices29,

organ-on-chip devices34, and robotic actuators46 that are controlled using flow in soft microchan-

nels. Thus, it has now become possible to address the fundamental issue of mixing in micro-

conduits made of soft elastomers, by employing passive manipulation techniques that rely on

altering the wall-elasticity to induce hydrodynamic instabilities that occur due to the dynamical

coupling between flow and deformation. This coupling is shown to result in a transition to a new

type of turbulence in flow past deformable solid surfaces20,33,35,38,39,41,43.

The theoretical study of flow past deformable surfaces was initiated by Benjamin3,5 and

Landhal4 who examined the effect of compliant surfaces on the stability of the flow. Benjamin

extended the classical theory of Tollmien and Schlichting9 to deformable surfaces and suggested

that the Tollmien-Schlichting instability (TSI) is suppressed by the presence of a flexible, non-

dissipative wall; however, the presence of damping in the flexible surface destabilises the TSI.

Benjamin3 and Landhal4 also introduced new classes of modes for flow past deformable surfaces

that are absent in flow past rigid surfaces termed as ‘flow-induced surface instabilities’ (FISI).

Many subsequent efforts6,10,11,13,16 focused on the study of the modification of TSI by the intro-

duction of flexible walls, modeled as spring-backed plates that undergo purely normal motion,

and concluded that the presence of a flexible wall has a stabilising effect on the TSI. These studies

were motivated by the experiments of Kramer1,2 and by the applications in marine and aerospace

industries, and hence focused on the stability of the flow in the high-Reynolds number regime.

However, the experiments of Lahav et al.,7 Krindel and Silberberg8 on gel-coated tubes showed

the transition to turbulence in a gel coated tube occurs at Reynolds number lower than 2000, and

thereby stimulated many theoretical and numerical studies of the stability of internal flows through

deformable conduits, in the low to moderately high Reynolds number regime as well.

Kumaran, Fredrickson, and Pincus14 first analyzed the linear stability of plane Couette flow past

a deformable wall modeled as a linear viscoelastic solid12, i.e., a continuum model that accounts

for both the elastic and dissipative nature of the deformable solid, in the absence of inertial effects

in the fluid and solid. They showed that flow instabilities in such systems occur due to the transfer

of energy from mean flow to the perturbations that in turn destabilises the solid-fluid interface.

These theoretical predictions are in quantitative agreement with the experiments performed by

Kumaran and Muralikrishnan20. The theoretical study by Kumaran et al.14 was further extended

to high Reynolds number by Srivatsan and Kumaran17 that indicates the presence of wall mode

instability (Re ∼ G3/4) in the high Reynolds number limit where G is the shear modulus of the

deformable solid. The wall-mode instabilities are characterized by the presence of the wall layer of

thicknessO(Re−1/3) smaller than the channel width or tube diameter, such that the viscous stresses

in the fluid layer become comparable to the inertial stresses. Also, a delicate balance between the

viscous stresses in the wall layer and elastic stresses in the deformable wall is present for this class

of instabilities. Later, Shankar and Kumaran25,27 performed an asymptotic analysis in the high

Reynolds number limit and showed that tangential wall motion is a crucial requirement to realize

2

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
10

01
2



the wall mode instability, and hence it is expected to be present for flexible walls modeled using

viscoelastic continuum models. They also established the fact that the gradient of the velocity for

the base flow profile at the wall has a significant influence on the wall-mode instability, although it

remains unaffected by the detailed variation of the base state flow velocity profile. Another type of

instability that is predicted in the high Reynolds number limit is termed as the “inviscid instability”

(Re ∼ G1/2) as the viscous forces in the fluid are usually insignificant in comparison to the inertial

forces in this limit except in a wall layer of thickness O(Re−1/2) near the deformable wall and a

“critical layer” of thickness O(Re−1/3). This instability is characterized by the balance between

the inertial stresses in the fluid and elastic stresses in the deformable solid (ρV 2/G ∼ 1)15,22 and

the presence of a critical layer near the point of singularity, where the base flow velocity equals

the wavespeed of the disturbance9,21,42.

Gkanis and Kumar28,31 suggested employing a nonlinear and material frame-invariant neo-

Hookean model for the deformable solid layer, in lieu of the linear elastic model, that is consistent

with finite base-state deformations. They showed the presence of a short-wave instability that is

absent for linear viscoelastic solid in the creeping-flow limit for plane Poisuielle flow. This work

was further extended to a wider range of Reynolds numbers by Gaurav and Shankar35. They pre-

dicted a new class of long-wavelength unstable modes along with short-wave instabilities by intro-

ducing consistent boundary conditions at a solid-fluid interface. However, for the high Reynolds

number regime, incorporation of the neo-Hookean model does not have a significant effect on the

stability of the most unstable modes. A detailed summary of the theoretical studies for the flow

past deformable surfaces can be found in Refs. 21 and 42. Recently, Patne et al.44,47 proposed

a consistent L3 neo-Hookean solid model to remove the disparities in the various formulations

used for the description of the neo-Hookean solid. While the low-Reynolds number instability

predicted by Gaurav and Shankar35 ceases to exist for the new consistent formulation, the results

in the high Reynolds number limit matches with their results for the neo-Hookean solid, and with

the predictions obtained using the linear-viscoelastic model. Thus, a simpler linear-viscoelastic

solid model can be used to predict the stability of wall and inviscid modes in the high Reynolds

number regime, the regime of focus in this study.

While the effect of a deformable solid wall on the stability of the flow in the low Reynolds

number regime has been experimentally established20, recently, Verma and Kumaran38 performed

experiments for plane Poiseuille flow in the high Reynolds number regime in channels made of

PDMS gel and observed transition to the turbulence at much lower Reynolds number (Re ∼ 500)

compared to the transition in rigid channels (Re ∼ 1200). Also, they showed that the exper-

imentally obtained transition Reynolds number is about an order of magnitude lower than the

theoretically predicted transition Reynolds number for wall modes and it scales as Σ5/8 (where

Σ = (ρGR2)/(η2) is a nondimensional parameter that depends on the fluid and solid properties),

where the exponent 5/8 is in between the theoretical prediction for wall modes (3/4) and inviscid

modes (1/2). Later, Verma and Kumaran39 argued that this discrepancy arises because the pres-

sure gradient deforms the soft solid to the extent that it modifies the laminar velocity profiles and

the pressure gradients in laminar flow. This subsequently alters the transition Reynolds number

and scaling in experiments. When the altered laminar velocity profile due to the deformation in

the channel is accounted for in the linear stability analysis, they showed that the experimental

observations agree with the theoretical predictions. Srinivas and Kumaran45 probed higher values

of Σ in their experiments by analyzing the flow of a Newtonian fluid in a deformable channel

made of polyacrylamide (PAA) gel with an unrestrained top boundary. They showed that flow

undergoes two types of transition, namely, “soft wall transition” that has characteristics similar to

the flow transitions observed by Kumaran and co-workers37,39,40,43 and “wall flutter transition” that
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FIG. 1: Schematic diagram showing the configuration and the non-dimensionalised coordinate

system under consideration. The unrestrained solid boundary at z = 2 +H is represented by

dashed line, while the solid line at z = −H represent the solid layer strongly bonded to a rigid

substrate.

occurs after the soft wall transition is observed for the flow and is present only for the unrestrained

boundary. This transition is characterised by asymmetric velocity fluctuations that are higher near

the unrestrained boundary and by downstream traveling waves on the surface of the unrestrained

wall. The transition Reynolds numbers for wall flutter transition scales as Σ1/2 that is similar to

the theoretically predicted scaling for inviscid instability for the internal flows15,18,35 and the wall

flutter instabilities for the external flows3–5.

However, the effect of an unrestrained, deformable boundary on flow instabilities has not been

addressed hitherto from a theoretical stand point. Thus, in this work, we analyze the stability of

pressure-driven flow of a Newtonian fluid through a deformable channel modeled as a linear-elastic

solid with an unrestrained top boundary to understand the influence of this boundary condition on

the flow instabilities encountered at higher Reynolds numbers in internal flows. We restrict our

analysis to 2D disturbances for the following reason. The experiments performed by Srinivas and

Kumaran45 used channels with a relatively large aspect ratio W/R ratio of ∼ 15 and ∼ 43, where

W is the width of the channel, and R represents the half-height of the channel. Thus, the 2D flow

approximation (corresponding to an infinite aspect ratio) used in our stability analysis is expected

to be sufficient to describe these experiments. The experiments report asymmetrical fluctuations

for the wall-flutter transition that is exclusively observed for an unrestrained deformable boundary.

We observe a similar impact of the unrestrained deformable boundary in our theoretical analysis

of the system that is supported with the help of eigenfunctions in figures 9-14. These similarities

of the theoretical predictions with the experiments show that the solid model and linear stability

analysis accurately capture the complicated dynamics of the system. This has now been clarified

in page ?? of the revised manuscript.

The rest of this paper is structured as follows: In section II we present the governing equations

for plane-Poiseuille flow along with the boundary conditions, base state solutions and the details

of the linear stability analysis. In section III , we discuss the results obtained using numerical and

asymptotic methods and present the major conclusions of the study in section IV . The details of

the asymptotic analysis performed for the wall mode instability are provided in the Appendix.
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II. PROBLEM FORMULATION

We consider the pressure-driven flow of an incompressible Newtonian fluid through a rect-

angular channel lined with a deformable solid, as shown in figure 1. The fluid of density ρ and

viscosity η flows in the region 0 < z∗ < 2R, through the deformable solid layers of thickness HR
which occupies the region −HR < z∗ < 0 and 2R < z∗ < (H + 2)R, where, the superscript

asterisk (∗) is used to represent the dimensional quantities. The impermeable and incompressible

solid layers are modeled as a linear elastic solid of density ρs, and the coefficient of elasticity G
and the ratio of the densities of solid and fluid are considered to be unity. We further consider

that the lower solid layer is strongly bonded to a rigid and impermeable surface at z∗ = −HR
and the upper solid layer is in contact with a passive gas at an unperturbed gas-solid interface at

z∗ = (H + 2)R.

We have used the following scheme to non-dimensionalize the dynamic quantities: Lengths

are scaled by the half-width of the fluid layer R, velocities are scaled by (G/ρ)1/2, pressure and

stresses are scaled by the shear modulus of the solid G. Under steady-state conditions, we consider

the flow of the Newtonian fluid to be unidirectional and fully developed, and the non-dimensional

velocity fields in the liquid layer are given by:

v̄x(z) = Γ(2z − z2) , (1)

v̄z = 0 . (2)

Here, Γ = (ρV 2
max/G)1/2, is the non-dimensional maximum velocity in the fluid, and Vmax is the

maximum dimensional velocity of the fluid under the laminar flow conditions.

The non-dimensional mass and momentum balance equations for the fluid take the following form:

∂ivi = 0 , (3)

[∂t + vj∂j ] vi = −∂ipf +
Γ

Re
∂jτij , (4)

where, ∂t = ∂/∂t and vi represents the velocity flow field. The indices i, j can take on the values

x, z representing the directions in the Cartesian plane. The Reynolds number used in equation

(4) is defined as Re = ρVmaxR/µ. The total stress tensor in the liquid layer can be written as

T ij = −pf δij+τ ij, where pf is the isotropic pressure, τ ij =
Γ
Re

(∂ivj + ∂jvi) is the non-dimensional

deviatoric stress tensor for the Newtonian fluid.

The deformable solid layer is modeled using the linear elastic constitutive relation which leads to

the following non-dimensionalised governing equations:

∂iui = 0 , (5)

∂2
t ui = ∂jΠij . (6)

Here, ui represents the displacement field in the solid, defined as the deviation of material points

from their initial positions when a stress is applied on the solid. Hence, the velocity field in

the solid layer is given as vi = ∂tui. The total stress tensor in the solid layer Πij, is given as

Πij = −ps δij + σij, where ps is the isotropic pressure, and σij = (∂iuj + ∂jui) is the deviatoric

elastic stress tensor. The above set of equations is solved using the following boundary conditions.

We use zero-displacement boundary conditions at z = (−H) as the solid layer is assumed to be

perfectly bonded to a rigid, impermeable plane. At the liquid-solid interfaces in the system at

(z = 0) and (z = 2), boundary conditions for the continuity of normal and tangential velocities as

well as stresses are applied and at the free surface, i.e. z = H + 2, boundary conditions for the

continuity of normal and tangential stresses are applied to define the system completely.
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A. Linear stability analysis

A temporal linear stability analysis is performed on the coupled fluid-solid system by imposing

small perturbations (denoted by primed quantities) about the base states (denoted by overbars).

All the dynamic variables in the fluid layer, as well as the solid layer, are perturbed as φ = φ̄+ φ
′

,

and the perturbed quantities are further expanded in the form of Fourier modes in the x-direction,

with an exponential dependence in time:

φ
′

(x, z, t) = φ̃(z) exp[ik(x− ct)] . (7)

Here, k is the wavenumber that is inversely proportional to the wavelength of perturbations, c is the

complex wavespeed, given as c = cr+ici, that determines the growth of perturbations. If the imag-

inary part of the wavespeed, ci > 0, the perturbations imposed onto the base state will grow with

time, and the system will be temporally unstable. Here, φ̃(z) represents the eigenfunctions which

can be obtained by solving the linearised governing equations determining the stability of the sys-

tem. As two-dimensional perturbations are shown to be more unstable than three-dimensional per-

turbations by Patne and Shankar47 for the flow of Newtonian fluid in deformable channel modeled

using the neo-Hookean model, we impose two-dimensional perturbations (neglecting the varia-

tions in the y-direction) to analyse the stability of the system.

The equations governing the dynamics of the fluid (3)-(6) are linearised by perturbing the dynam-

ical variables and retaining the terms linear in perturbation variables. The linearised governing

equations for the fluid take the following form after substitution of the Fourier mode expansions

(7) in the perturbation variables:

dzṽz + ikṽx = 0 , (8)

[ik(v̄x − c)ṽx + (dz v̄x)ṽz] = −ikp̃ +
Γ

Re
(d2z − k2)ṽx , (9)

[ik(v̄x − c)ṽz] = −dzp̃+
Γ

Re
(d2z − k2)ṽz . (10)

The linearized governing equations for the displacement field in the solid layers are as follows:

dzũzi + ikũxi = 0 , (11)

k2c2ũxi − ikp̃s + (d2z − k2)ũxi = 0 , (12)

k2c2ũzi − dzp̃s + (d2z − k2)ũzi = 0 , (13)

where i takes the values 1 and 2 representing solid layers 1 and 2 respectively.

These linearised equations are solved together with the linearised boundary conditions mentioned

below. The zero-displacement conditions imposed at z = −H are:

ũz1 = 0 , (14)

ũx1 = 0 . (15)

At the solid-fluid interface, boundary conditions for continuity of velocity and stresses are applied

by Taylor expanding the mean flow and perturbed variables about the unperturbed interface at

z = 0. The terms linear in perturbation variables are retained to obtain the following conditions:

ṽz = −ikcũz1 , (16)

ṽx + dz v̄x|z=0 ũz1 = −ikcũx1 , (17)

Re−1Γ(dzṽx + ikṽz) = dzũx1 + ikũz1 , (18)

−p̃f + 2Re−1Γdz ṽz = −p̃s1 + 2dzũz1 . (19)
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FIG. 2: Neutral stability curves in Re-Σ plane for rigidly bonded and unrestrained boundary

conditions at z = H + 2: Data for H = 1 and k = 1.

Here, the equations (16) and (17) represent normal and tangential continuity conditions for the

velocity field and the equations (18) and (19) represent normal and tangential continuity of stresses.

We obtain similar conditions for the fluid-solid interface at z = 2:

ṽz = −ikcũz2 , (20)

ṽx + dz v̄x|z=2 ũz2 = −ikcũx2 , (21)

Re−1Γ(dzṽx + ikṽz) = dzũx2 + ikũz2 , (22)

−p̃f + 2Re−1Γdz ṽz = −p̃s2 + 2dzũz2 . (23)

At z = H + 2, we consider the solid layer is exposed to a passive gas and hence it experiences no

tangential as well as normal stress at the gas-solid interface. The linearised boundary conditions

are as follows:

dzũx2 + ikũz2 = 0 , (24)

−p̃s2 + 2dzũz2 = 0 . (25)

The above two boundary conditions (Eq. 24-25) represent a significant departure from all the ear-

lier studies in this area by considering an unrestrained or unbonded solid boundary.

The linearised governing equations (8)-(13) along with the boundary conditions (14)-(25) con-

stitute a differential eigenvalue problem that is numerically solved using the spectral collocation

method.19,23 The linearised governing equations are represented in a generalised eigenvalue prob-

lem of form c2Ax + cBx + Cx = 0, where the complex wavespeed c (function of Re, k,H,Γ)

is the eigenvalue, A,B and C are the coefficient matrices and the column vector x contains the

eigenvectors. The validity of the eigenvalues obtained using the spectral method is checked using

the shooting method with ortho-normalization35. The agreement between the eigenvalues obtained

using shooting and spectral methods is between 6 to 8 decimal places.
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FIG. 3: Eigenvalue spectrum showing the effect of unrestrained boundary. Data for H = 1,

k = 1, Re = 4000 and Γ = 2.4398. Panel (a) shows the overall picture, while Panel (b) shows the

enlarged region near the A, P, S branches.

III. RESULTS AND DISCUSSION

In this section, we present results from linear stability analysis of pressure-driven flow of a

Newtonian fluid in a deformable channel with an unrestrained boundary at z = H+2 to understand

its effect on the flow in the high Reynolds number regime. In figure 2, we present a neutral stability

curve (ci = 0) in the Re-Σ plane, for H = 1 and k = 1, to compare the effects of the unrestrained

boundary at z = H + 2, with a similar system that considers the deformable solid layer-2 to be

perfectly bonded to a rigid surface at z = H+2 (henceforth referred as ‘rigidly bonded’ boundary

condition) and satisfies the boundary conditions ũx2 = 0 and ũz2 = 0. We observe that in the high-

Re limit, two distinct modes, namely, wall modes (Re ∝ Σ3/4) and inviscid modes (Re ∝ Σ1/2)

exist for the present system where, Σ = ρGR2/η2 = (Re/Γ)2, is a non-dimensional parameter

that is independent of fluid velocity and is a function of fluid and deformable wall properties.

We find that for wall modes, the presence of an unrestrained top boundary reduces the threshold

Re for instability by an order of magnitude, i.e., for Σ = 1× 105, the transition Reynolds number

for the rigidly-bonded boundary condition at z = H + 2 is ∼ 5 × 104, whereas the transition

Reynolds number for the system with unrestrained top boundary is ∼ 1650. In a similar manner,

the inviscid mode is also significantly destabilised by the presence of the unrestrained boundary.

In figures 3a and 3b, we show the eigenvalue spectrum for both rigidly-bonded and unrestrained

boundary conditions at z = H+2, for H = 1 and k = 1. We have fixed the value of the parameter

Γ such that there is a neutrally stable mode for the rigidly-bonded boundary condition (marked

by a red circle, in figure 3b). For the unrestrained boundary condition, at the same value of Γ,

we observe that the neutrally stable mode (present for the rigidly-bonded boundary) destabilises

marginally. However, a new mode (marked by a red square) evolves from the series of eigen-

values near ci = 0 present due to the wall layer that destabilises the flow. Also, the eigenvalues

present on the A, P, S branches24 are observed to be only marginally altered by the presence of the

unrestrained boundary at z = H + 2 for the given set of parameters.

The substantial reduction in the threshold Re for instability due to the unrestrained boundary

prompted us to further investigate its effects for the higher values of H , used in the experiments
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FIG. 4: Neutral stability curves in the Re-k plane for the wall mode for H = 7.77.The solid line

( ) represent Σ = 1.01× 106, dashed line ( ) represent Σ = 2.42× 106, dotted line ( )

represent Σ = 7.47× 106 and dashed-dotted line ( ) represent Σ = 1.02× 107.
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FIG. 5: Neutral stability curves in the Re-k plane for the inviscid mode for H = 7.77. The solid

line ( ) represent Σ = 1.01× 106, dashed line ( ) represent Σ = 2.43× 106, dotted line ( )

represent Σ = 4.03× 106 and dashed-dotted line ( ) represent Σ = 7.11× 106.

by Srinivas and Kumaran45. In figure 4, we present Re vs k curves for wall modes at H = 7.7
for fixed values of the parameter Σ to obtain the minimum value of the Reynolds number (Recr)
with variation in the wavenumber, k. The value of k for which Re is minimum is termed as the

critical wavenumber, kcr. A similar procedure is repeated to obtain the critical wavenumbers for

the inviscid mode for the fixed values of the parameter Σ, as shown in figure 5.

In figure 6, we present neutral stability curves showing the variation of critical Reynolds num-

ber with Σ at critical wavenumbers (kcr) for wall modes and inviscid modes at H = 7.77. We

observe that both the modes are destabilised by the presence of the unrestrained boundary at
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FIG. 6: Comparison of neutral stability curves in Re-Σ plane for different configurations (rigidly

bonded and unrestrained boundary conditions at z = H + 2): Data for H = 7.77 and k = kcr.

z = H + 2. However, the reduction in Rec due to the unrestrained boundary is not as drastic

it was for H = 1. Also, for a fixed value of the parameter Σ, the difference in the critical Reynolds

number for the wall mode is more as compared to the inviscid mode, indicating that the presence

of the unrestrained boundary has a higher impact on the stability of wall modes for higher values

of H . When compared with the experiments of Srinivas and Kumaran45 at Σ = 2.43 × 106 and

Σ = 7.10×106 (the values of Σ at which experiments observe an instability for H = 7.77) the the-

oretically predicted values for the critical Reynolds number (Recr ∼ 7690 for Σ = 2.43× 106 and

Recr ∼ 15000 for Σ = 7.10× 106) for soft wall transition (experimental equivalent for wall mode

instability) is an order of magnitude higher than the experimentally observed transition Reynolds

number (Re ∼ 1430 for Σ = 2.43 × 106 and Re ∼ 1882 for Σ = 7.10 × 106). This disparity is

similar to the one addressed by Verma and Kumaran38,39, and, in principle, ought to be resolved

by the inclusion of the change in the shape of the deformable wall with the flow and the concomit-

tant change in the base-state velocity profile. The theoretically predicted critical Reynolds number

(Recr ∼ 1300 for Σ = 2.43× 106 and Recr ∼ 2250 for Σ = 7.10× 106) is observed to be in close

proximity of experimentally captured transition Reynolds number (Re ∼ 1790 for Σ = 2.43×106

and Re ∼ 2410 for Σ = 7.10×106) for the wall flutter transition (Σ ∼ Re1/2); however, the effect

of the unrestrained boundary is not significant for this mode of instability.

We also performed an asymptotic analysis for the wall modes by following the procedure of

Shankar and Kumaran27 to understand the effect of the unrestrained boundary condition on the

wall modes, and the details of this analysis are discussed in Appendix. As shown in figure 7, for

H = 7.77 and k = kcr, the results obtained from the asymptotic analysis are in good agreement

with the complete numerical solution of the governing equations at high Reynolds number for both

the rigidly bounded boundary condition and the unrestrained boundary condition at z = H + 2.

The relative error in the dimensionless maximum velocity (|Γnumerical − Γasymptotic|/Γnumerical)

and the leading order wavespeed (|cnumerical − c(0)|/cnumerical), obtained using the numerical and

the asymptotic solutions to the governing equations, are plotted against the Reynolds number in

figure 8, that shows that the relative error in Γ0 and the leading order wavespeed c(0) decreases as

Re−1/3, as per the prediction of the asymptotic analysis.
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FIG. 7: Neutral stability curves in Re-Σ plane for different configurations (rigidly bonded and

unrestrained boundary conditions at z = H + 2) comparing the asymptotic results with numerical

results for the wall modes: Data for H = 7.77 and k = kcr.
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FIG. 8: Variation of relative error in leading order wavespeed (c(0)) and non-dimensional

maximum velocity (Γ) for different configurations (rigidly bonded and unrestrained boundary

conditions at z = H + 2): Data for H = 7.77 and k = kcr.

Figures 9a and 9b show the variation of real and imaginary parts of the eigenfunction ṽx (nor-

malised by the maximum velocity) with z for the wall modes at H = 7.77 and kcr. We note that

the velocities are very large near the fluid-solid interface at z = 2, i.e., the fluid-solid interface near

the unrestrained boundary at z = H + 2 in contrast to the little variation at z = 0, the fluid-solid

interface for solid layer-1, that is perfectly bonded to a rigid substrate at z = −H . This suggests

that the dynamics of the system is dominated by the deformable solid layer near the unrestrained

boundary. Also, with an increase in the Reynolds number, the boundary layer thickness decreases,
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0.0 0.4 0.8 1.2 1.6 2.0

-0.6

-0.4

-0.2

0.0

0.2

Im
ag

in
ar

y 
pa

rt
 o

f t
he

 e
ig

en
fu

ct
io

n,
 V

x

z

 Re = 70000
 Re = 30000
 Re = 15000
 Re = 10000
 Re = 5000

(b) Im[ṽx]

FIG. 9: Normalised eigenfunction ṽx for the most unstable wall-mode at different Reynolds

number. Panel (a) show the real part of the eigenfunction ṽx and Panel (b) show the imaginary

part of the eigenfunction ṽx for H = 7.77, kcr = 0.92 and Re as shown in figure.

which suggests an inverse proportionality with Reynolds number that is further verified by the

asymptotic analysis. In a similar manner, a sharp transition in the velocity is observed for the

eigenfunction ṽz near the fluid-solid interface at z = 2, as shown in figures 10a and 10b. The

presence of an unrestrained (free) boundary increases the perturbations at the fluid-solid interface

near the unrestrained boundary (z = 2), as illustrated by the eigenfunctions (ṽx, ṽz), thereby mak-

ing the flow more unstable. If we allow the outer boundaries of both the walls to move freely,

the system is expected to destabilize further. In such a configuration, the eigenfunctions for both

the wall and inviscid modes can either be symmetric or antisymmetric about the channel center,

representing ‘varicose’ or ‘sinuous’ modes of wall deformations. That possibility is precluded by

the presence of one rigidly-bonded boundary in the present study.

The eigenfunctions obtained for the inviscid mode for H = 7.77 and kcr are shown in figures

11 and 12. For the variation of the tangential velocity fluctuation ṽx with z, we observed the

following: first, the eigenfunctions do not vary significantly over an extensive range of Reynolds

number, indicating that the dynamics of the inviscid mode is independent of the Reynolds number

in most of the region. Second, it can be observed that there is a sharp change in the slope of the

eigenfunctions near z = 2, i.e., the fluid-solid interface near the unrestricted boundary, that also

gets steeper with the increase in the Reynolds number (as shown in the inset of the figure 11), in-

dicating the presence of a boundary layer near z = 2. Third, the eigenfunction has a constant value

(∼ 0) in the domain 0 to 1, i.e., there is no effect of the solid layer-1 (perfectly bounded to a rigid

surface at z = −H), on the inviscid dynamics of the system and fourth, a slight variation is ob-

served in the eigenfunctions with the Reynolds number, at z = 1, i.e., the centerline of the channel

indicating that a boundary layer can be present there that alters the behavior of the eigenfunctions

in the z = 0 to z = 1 region. All these observations imply that the presence of the unrestrained

boundary ultimately dictates the dynamics of the system for both wall and inviscid modes. It is

noted here that the asymmetric behavior in the normal and tangential velocity fluctuations (v′x, v
′
z)

was observed for the wall flutter transition in the experimental study by Srinivas and Kumaran45

where they show that the fluid velocity fluctuations near the unrestrained wall are higher than the

fluctuations near the deformable wall rigidly bonded to a solid substrate, for the flow a Newtonian
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FIG. 10: Normalised eigenfunction ṽz for the most unstable wall-mode at different Reynolds

number. Panel (a) show the real part of the eigenfunction ṽz and Panel (b) show the imaginary

part of the eigenfunction ṽz for H = 7.77, kcr = 0.92 and Re as shown in figure.
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FIG. 11: Real part of the normalised eigenfunction ṽx for the inviscid mode: Data for H = 7.77,

kcr = 0.56 and Re as mentioned in the figure.

fluid in an unrestrained channel. This experimental observation further supports the numerical

predictions in context to the effect of the unrestrained boundary condition. In figures 13 and

14, we present the variation of the real and imaginary parts of the eigenfunction ṽz with z for the

inviscid mode at H = 7.77 and kcr. We observe that there is no effect of solid layer-1 rigidly

bonded to a solid substrate on the inviscid dynamics of the system. Also, there is no effect of the

variation of the Reynolds number in most of the parameter space. The eigenfunctions ṽz merge

for all Reynolds numbers near both the ends however, a little variation can be observed around the

centerline (see inset in figure 13 and figure 14).

Thus by observing the variation of normal and tangential velocity fluctuations with z, we con-
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FIG. 12: Imaginary part of the normailsed eigenfunction ṽx for the inviscid mode: Data for

H = 7.77, k = 0.568 and Re as mentioned in the figure.
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FIG. 13: Real part of the eigenfunction ṽz for the inviscid mode: Data for H = 7.77, k = 0.56
and Re as mentioned in the figure.

clude that the solid layer-1 has a minimal role in determining the stability of the most unstable

modes (both wall and inviscid) of the system. To further verify this fact, we varied Γ values for

solid layer-1 from 10−7 to 107 (where Γ → 0 for rigid solid) and the Γ values in the solid layer-2
are kept the same as required for the transition of flow from stable to unstable at H = 7.77 and

k = kcr. In figure 15, we present the neutral stability curves in the Re-Σ plane for both inviscid

and wall modes for variation of Γ in lower solid layer, where we observe that the neutral stability

curves for both the modes (wall and inviscid) overlap for all the cases of wide range of variation

in the shear modulus in the solid layer-1. This confirms that the solid layer-1 does not affect the

stability of the system and the dynamics of the system is driven by the presence of an unrestrained

boundary.
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FIG. 14: Imaginary part of the eigenfunction ṽz for the inviscid mode: Data for H = 7.77,

k = 0.56 and Re as mentioned in the figure.
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FIG. 15: Neutral stability curve in Re − Σ plane: Data for H = 7.77, k = 0.56 for the inviscid

mode and k = 0.92 for the wall mode and Γ as mentioned in the figure.

IV. CONCLUSIONS

We analysed the linear stability of the pressure-driven flow of a Newtonian fluid in a deformable

channel with an unrestrained top boundary to understand its role on the stability of the system.

The results suggest that, in the limit of high Reynolds number, both wall modes (Re ∼ Σ3/4) and

inviscid modes (Re ∼ Σ1/2) are destabilised by the presence of the unrestrained boundary. The

extent of destabilization is more pronounced when the ratio of solid to fluid thickness, H ∼ O(1),
and is only moderate for H ∼ 8. The eigenfunctions corresponding to the unstable wall and invis-

cid modes show an asymmetric behavior that is consistent with the experimental observations of
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FIG. 16: Schematic diagram showing the flow structure for high Reynolds number wall modes in

fluid flow through deformable channel. The unrestrained boundary at z = H + 2 is represented

by dashed line.

Srinivas and Kumaran45 for wall flutter transition. We also performed an asymptotic analysis for

the wall mode instability, and the results are in good agreement with the numerical solution of the

complete governing equations. We further showed that there is no effect of the lower solid layer

on the critical Reynolds number and hence the stability of the system is only controlled by the

thickness (H) and shear modulus (Γ) values of the top solid layer with the unrestrained boundary.

Thus, in configurations containing a deformable wall with an unrestrained boundary, the flow sta-

bility is strongly influenced by the properties of solid layer with the unrestrained boundary, while

the other solid layer has negligible effect on the same. This feature could be potentially exploited

in manipulating and controlling flow instabilities in such systems.

Data Availability: The data that support the findings of this study are available from the corre-

sponding author upon reasonable request.

Appendix: Asymptotic analysis of wall modes

In this appendix, we provide the details of the asymptotic analysis performed in the high

Reynolds number limit25,27 to estimate the wavespeed of “wall modes” for the pressure-driven

flow of a Newtonian fluid in an unrestrained deformable channel to understand the influence of the

“unrestrained boundary condition” on the dynamics of the system.

In this analysis, the flow velocity is divided into two distinct regions, as shown in figure 16.

A “wall layer” is formed near the solid-fluid interface where the inertial and the viscous forces

balance each other and an “inviscid core” develops in the central part of the fluid layer where

the inertial forces dominate the viscous forces. Thus, the flow velocity field in the fluid layer is

broadly divided as:

ṽi = ṽinviscid,i + ṽwall,i , (A.1)

where, i takes on the values x, z representing the directions in the Cartesian plane. We further

divide the velocity field in the wall layer, ṽwall,i as:

ṽwall,i = ṽtop,wi + ṽbot,wi , (A.2)

where, the subscripts top and bot represent the velocity field in the wall layer near the fluid-solid

interfaces at z = 2 and z = 0 respectively. In this analysis, we focus on the wall layer near the

fluid-solid interface at z = 2 to understand the influence of the unrestrained boundary condition at

z = H + 2 on the stability of the system.
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As the wavespeed of the wall modes is O(Re−1/3) smaller in comparison to the characteristic

velocity of the base flow,25 c/Γ ∼ Re−1/3, within the present scheme of non-dimensionalisation.

Also, the dimensionless maximum velocity of the base flow, Γ ∼ Re1/3, as Re ∼ Σ3/4 for the

wall modes25, where, Σ = (Re
Γ
)2. Thus, we consider the wavespeed c ∼ O(1) and expand it in an

asymptotic series as follows:

c = c(0) + δc(1) + · · · (A.3)

Here, δ ∼ Re−1/3 is the thickness of the wall layer near the fluid-solid interface, and the rela-

tionship of the wall layer thickness with the Reynolds number is obtained by performing a scaling

analysis on the x-momentum balance equation (Eq. 9) for the fluid. We now introduce an “inner-

coordinate” ξ, for the wall layer near z = 2, such that (2 − z) = ξδ and the derivatives dz in the

wall layer transform as dz = δ−1dξ, where dξ = d/dξ. The base-flow velocity profile (Eq. 1) is

re-scaled in the wall layer as:

V̄x = Γ(2− ξδ)δξ, (A.4)

where, Γ = Γ0Re1/3 and Γ0 is an O(1) quantity. The dynamic quantities in the fluid layer are

expanded in the asymptotic series as follows:

ṽtop,wx = ṽ
(0)
top,wx + δṽ

(1)
top,wx + · · · (A.5)

ṽtop,wz = δṽ
(0)
top,wz + δ2ṽ

(1)
top ,wz + · · · (A.6)

p̃top,wf = p̃
(0)
top,wf + δp

(1)
top,wf + · · · . (A.7)

The above expansions (A.5-A.7) along with the scales for z-coordinate are substituted in the gov-

erning equations of the fluid flow (Eqs. 8-10), to obtain the following relations. The scaled conti-

nuity equation in the wall layer to the leading order in δ is given as:

−dξṽ
(0)
top,wz + ikṽ

(0)
top,wx = 0 . (A.8)

The scaled x-momentum balance equation is given as:

ik

[

δξ(2− ξδ)−
c(0)

Γ0

]

ṽ
(0)
top,wx + 2(ξδ − 1)ṽ

(0)
top,wz =

−ik
p̃top,wf

Γ0
+
(

d2
ξ − (Γ0δ

2)k2
)

ṽ
(0)
top,wx . (A.9)

Thus, to a leading order in δ we obtain the following x-momentum equation:

ik

[

2ξ −
c(0)

Γ0

]

ṽ
(0)
top,wx − 2ṽ

(0)
top,wz = −ik

p̃
(0)
top,wf

Γ0
+ d2

ξ ṽ
(0)
top,wx . (A.10)

Similarly, the scaled z-momentum balance equation is given as :

ik

[

δξ(2− ξδ)−
c(0)

Γ0

]

ṽ
(0)
top,wz =

−δ−2dξp̃top,wf

Γ0
+
(

d2
ξ − (Γ0δ

2)k2
)

ṽ
(0)
top,wz . (A.11)

To a leading order in δ we obtain the following z-momentum equation:

dξp̃top,wf = 0 . (A.12)
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Equations (A.8), (A.10) and (A.12) are combined to obtain a fourth-order differential equation for

ṽ
(0)
top,wz to a leading order in δ:

[

d2
ξ − ik

(

2ξ −
c(0)

Γ0

)]

d2
ξ ṽ

(0)
top,wz = 0 . (A.13)

We further define another variable y, such that y = (2ik)1/3
[

ξ − c(0)/ (2Γ0)
]

and dξ = (2ik)(1/3)dy.

Thus, the equation A.13 takes the following form:

[

d2
y − y

]

d2
ξ ṽ

(0)
top,wz = 0 . (A.14)

The general solution to the equation A.14 is given as:

ṽ
(0)
top,wz = C1 + C2ξ + C3[yAi(y, 1)− Ai(y,−1)] + C4[yBi(y, 1)− Bi(y,−1)], (A.15)

where, Ai(y, p) and Bi(y, p) are the generalized Airy functions (p = ±1)25. The Airy functions

Ai(y, p) are convergent in the limit ξ → ∞ if (−π/3) < Arg(ξ) < (π/3). Hence, we choose

Arg
(

i1/3
)

= π/6 in the definition of y. The Airy function Bi(y, p) diverges in this domain, so we

are required to set C4 = 0. Also, we set the coefficients C1 and C2 to be 0 as C1 and C2ξ are the

inviscid solutions27. The resulting velocity and pressure profiles in the wall layer are reduced to

the following from:

ṽ
(0)
top,wz = C32

−1/3(ik)2/3[yAi(y, 1)− Ai(y,−1)] , (A.16)

ṽ
(0)
top,wx = C3Ai(y, 1) , (A.17)

p̃
(0)
top,wf = 0 . (A.18)

Now, to obtain the next dominant contribution in the fluid velocity field, ṽinviscid,i, we set Re−1 = 0
in the linearised governing equations for the fluid flow (Eqs. 8-10) and expand the velocities and

pressures for the “inviscid-layer” in the following asymptotic series:

ṽinviscid,z = δṽ
(0)
inviscid,z + δ2ṽ

(1)
inviscid,z + · · · , (A.19)

ṽinviscid,x = δṽ
(0)
inviscid,x + δ2ṽ

(1)
inviscid,x + · · · , (A.20)

p̃inviscid,f = p̃
(0)
inviscid,f + δp̃

(1)
inviscid,f + · · · . (A.21)

These expansions are substituted in the governing equations for the inviscid-core layer which are

further reduced to obtain a single second-order differential equation in the leading order of the

small parameter δ:
(

d2z − k2
)

ṽ
(0)
inviscid,z + 2ṽ

(0)
inviscid,z = 0. (A.22)

The general solution to the differential equation A.22 is given as:

ṽ
(0)
inviscid,z = C1e

(
√
k2−2)z + C2e

−(
√
k2−2)z. (A.23)

The constants C1 and C2 can be obtained using the boundary conditions at the fluid-solid inter-

faces, and the expressions for ṽ
(0)
inviscid,x and p̃

(0)
inviscid,f can be derived from the governing equations

for the inviscid limit.
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Next, we present the asymptotic expansions for wall displacement fields. We consider ũx ∼
O(1)25, that gives ũz ∼ O(1) in the bulk of the wall medium such that:

ũx = ũ(0)
x + δũ(1)

x + · · · , (A.24)

ũz = ũ(0)
z + δũ(1)

z + · · · , (A.25)

p̃g = p̃(0)g + δp̃(1)g + · · · . (A.26)

The above expansions (Eqs. A.24-A.26) are substituted in the linearised governing equations (Eqs.

11-13) for the deformable solid-layer to obtain the following governing equations to the leading

order in the small parameter δ:

dzũ
(0)
z + ikũ(0)

x = 0 , (A.27)

−k2
(

c(0)
)2

ũ(0)
x = −ikp̃(0)g +

(

d2
z − k2

)

ũ(0)
x , (A.28)

−k2
(

c(0)
)2

ũ(0)
z = −dz p̃

(0)
g +

(

d2
z − k2

)

ũ(0)
z . (A.29)

These equations (A.27 - A.29) are further combined to obtain a fourth order differential equation

for ũ
(0)
z to a leading order in δ:

(

d2
z − k2

)2
ũ(0)
z − k2

(

c(0)
)2 (

d2
z − k2

)

ũ(0)
z = 0 . (A.30)

The solution to the leading order displacement field ũ
(0)
z is given as:

ũ(0)
z = B1 exp[kz] +B2 exp[γz] +B3 exp[−kz] +B4 exp[−γz] , (A.31)

ũ(0)
x = B1i exp[kz] +B2(iγ/k) exp[γz]− iB3 exp[−kz]− (iγ/k) exp[−γz] . (A.32)

where, γ = k

√

1− (c(0))
2
. The constants B1, B2, B3 and B4 are determined using the boundary

conditions at z = H + 2 and z = 2. The first correction to the displacement field, obtained in a

similar manner is given as:

ũ(1)
z =B2

(

−k2c(0)c(1)z/γ
)

exp[γz]− B4i
(

−k2c(0)c(1)z/γ
)

exp[−γz] , (A.33)

ũ(1)
x =B2i

(

−k2c(0)c(1)(1 + γz)/(γk)
)

exp[γz] +B4i
(

−k2c(0)c(1)(−1 + γz)
)

exp[−γz] .
(A.34)

The asymptotic series expansions for the solid displacement fields and the pressure in the gel layer

(Eqs. A.24 - A.26), the flow velocities and pressure in the wall layer (Eqs.A.5 - A.7) and the flow

velocities and pressure in the inviscid layer (Eqs. A.19 - A.21) are substituted in the boundary

conditions (Eqs. 20 - 23) at the fluid-solid interface, z = 2. The transformed continuity condition

for normal velocity (Eq. 20) is given as:

δ
(

ṽ
(0)
inviscid,z + ṽ

(0)
top,wz

)

=− ik
(

c(0) + δc(1) + · · ·
)

×
(

ũ(0)
z + δũ(1)

z + · · ·
)

. (A.35)

To a leading order in δ, equation A.35 becomes:

ũ(0)
z = 0. (A.36)

The first correction to the equation (A.35) is given as:

(

ṽ
(0)
inviscid,z + ṽ

(0)
top,wz

)

= −ik
(

c(0)ũ(1)
z

)

. (A.37)
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Similarly, the transformed tangential velocity continuity condition (Eq. 21), is as follows:

ṽ
(0)
top,wx − 2δ−1Γ0

(

ũ(0)
z + δũ(1)

z + · · ·
)

= −ik
(

c(0) + δc(1) + · · ·
) (

ũ(0)
x + δũ(1)

x + · · ·
)

. (A.38)

The above equation gives the following condition to a leading order in δ:

ũ(0)
z = 0. (A.39)

It is to note here that this equation is identical to the equation A.36 obtained as leading order

equation from the normal velocity boundary condition. The first correction to the equation (A.38)

is given as:

ṽ
(0)
top,wx − 2Γ0ũ

(1)
z = −ikc(0)ũ(0)

x . (A.40)

The tangential stress balance at the fluid solid interface (Eq. 22), transforms as:

Γ0δ
(

−dξ ṽ
(0)
top,wx + δ2ikṽ

(0)
top,wz

)

=
[(

dzũ
(0)
x + ikũ(0)

z

)

+ δ
(

dzũ
(1)
x + ikũ(1)

z

)]

. (A.41)

The leading order relation and the first correction to equation A.41 are given as:

(

dzũ
(0)
x + ikũ(0)

z

)

= 0 , (A.42)

−Γ0

(

dξṽ
(0)
top,wx

)

=
(

dzũ
(1)
x + ikũ(1)

z

)

. (A.43)

The transformed boundary condition for the normal stress balance (Eq. 23) at the fluid solid

interface z = 2 becomes:

−
(

p̃
(0)
top,wf + δp̃

(1)
top,wf

)

+ 2Γ0δ
2
(

−dξṽ
(0)
top,wz

)

= −
(

p̃(0)g + δp̃(1)g

)

+ 2
(

dzũ
(0)
z + δdzũ

(1)
z

)

.

(A.44)

The above equation can further be separated into the leading order and first correction equations

given as:

−p̃
(0)
f = −p̃(0)g + 2dzũ

(0)
z , (A.45)

−p̃
(1)
f = −p̃(1)g + 2dzũ

(1)
z . (A.46)

This completes the set of boundary conditions at the fluid-sold interface at z = 2. We now present

the boundary conditions at the “unrestrained boundary”, i.e., z = H + 2. The boundary condition

for tangential stress balance (Eq. 24) at the interface transforms as:

dz

(

ũ(0)
x + δũ(1)

x

)

+ ik
(

ũ(0)
z + δũ(1)

z

)

= 0 . (A.47)

The leading order and first correction equations to the above boundary condition are given as:

dzũ
(0)
x + ikũ(0)

z = 0 , (A.48)

dzũ
(1)
x + ikũ(1)

z = 0 . (A.49)

The boundary condition for normal stress balance (Eq. 25) at the interface z = H + 2 transforms

as:

−
(

p̃(0)g + δp̃(1)g

)

+ 2
(

dzũ
(0)
z + δdzũ

(1)
z

)

= 0 . (A.50)
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The above equation can further be expressed as the leading order and first correction equations at

the unrestrained boundary:

p̃(0)g + 2dzũ
(0)
z = 0 , (A.51)

p̃(1)g + 2dzũ
(1)
z = 0 . (A.52)

However, if we consider the “rigidly bonded” boundary condition at z = H + 2, we get the

following equations as leading order and first corrections:

ũ(0)
z = 0, ũ(0)

x = 0 , (A.53)

ũ(1)
z = 0, ũ(1)

x = 0 . (A.54)

This completes the description of the boundary conditions for the system under consideration. As

we can notice, the velocity fields in the wall layer do not appear to the leading order in the boundary

conditions. Thus, the leading order wavespeed is obtained by using the boundary conditions A.36,

A.42, A.48, and A.51. This system of equations is written in a matrix form as MB = 0, where

B is a vector of constants B1, B2, B3, and B4 occurring in the equation (A.31). We obtain a

characteristic equation by setting Det[M] = 0. The leading order wavespeed (c(0)) obtained from

the characteristic equation has multiple solutions that are real and positive, indicating that the

perturbations are stable in the leading order approximation. Thus, we proceed to calculate the

first correction to the wavespeed, c(1), by determining the O(δ) correction to the characteristic

equation, Det[M] = 0. The results obtained for the first correction to the wavespeed (c(1)) are

“complex numbers,” and so we set Im
[

c(1)
]

= 0 to find the value of Γ0 required to obtain the

neutrally stable modes. It is to note here that for each of the multiple solutions obtained for c(0),
we can obtain a first correction c(1), which can further be used to determine the multiple solutions

for the scaled velocity Γ0 required to obtain the neutrally stable modes. This suggests that there

can be multiple unstable solutions in the limit of high Reynolds number.
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