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We study the dynamics of shear startup of Johnson-Segalman and non-stretching
Rolie-Poly models using nonlinear simulations. We consider startup to shear rates
in both monotonic and nonmonotonic regions of the constitutive curve. For the
Johnson-Segalman model, which exhibits a shear stress overshoot during startup,
our nonlinear simulations show that transient shear banding is absent regardless
of whether the start-up shear rate is in the monotonic or nonmonotonic regions of
the constitutive curve. In the latter case, while there is clearly an inhomogeneity en
route to the banded state, the magnitude of the extent of banding is not substantially
large compared to that of the eventual banded state. Marked inhomogeneity in the
velocity profile is predicted for the non-stretching Rolie-Poly model only if the solvent
to solution viscosity ratio is smaller than O(10−3), but its occurrence does not appear
to have any correlation with the stress overshoot during startup. The comparison
of the present nonlinear results with the results obtained within the framework of
linearized dynamics show that nonlinearities have a stabilizing effect and mitigate
the divergence of perturbations (as predicted within the linearized dynamics) during
shear startup. We argue that the neglect of inertia in the nonlinear simulations is
not self-consistent if the solvent to solution viscosity ratio is very small, and that
inertial effects need to be included in order to obtain physically realistic results.
Furthermore, our study demonstrates a pronounced sensitivity of shear startup in
the nonstretching Rolie Poly model when a random white noise with zero mean is
used as the initial perturbation. Finally, this study clearly emphasizes that stress
overshoot during shear startup does not always result in transient shear banding,
notwithstanding whether the shear rates is in the monotonic or nonmonotonic part
of the constitutive curve.
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I. INTRODUCTION

The flow characteristics and rheology of viscoelastic fluids are often determined by sub-
jecting them to shear and extensional flows. Several constitutive models have been proposed
in the literature to predict the experimental results [1–19]. When viscoelastic fluids undergo
shear and extensional flows, they are often susceptible to various instabilities [1–9]. Shear
banding is one such example of an instability exhibited by viscoelastic materials with a non-
monotonic constitutive relation between shear stress and shear rate. When such a material
is subjected to a planar Couette flow, with the applied shear rate in the nonmonotonic re-
gion of the constitutive curve, the linear velocity profile becomes unstable and transforms
into bands of two distinct shear rates. The shear rates of the two bands lie on the stable
branches of the constitutive curve.

Shear banding that ensues after the flow has reached a steady state is referred to as
steady-state shear banding. Transient banding, in contrast, occurs when the flow is evolving
towards the banded or homogeneous steady state, with the presence of two or more bands
with distinctly different shear rates characterized by a sharp transition zone between the
bands. When the eventual steady state is banded, it is unambiguous to identify transient
shear banding only if the velocity profiles during evolution exhibit substantially pronounced
banding compared to the eventual steady-state banding [20].

In recent studies, transient shear banding is often quantified by monitoring the difference
between maximum and minimum shear rates, which has been dubbed as the ‘degree of
banding’ [20 and 21]. If the steady state is homogeneous, then the evolution of degree of
banding with time can transiently increase to attain a maximum and then decrease to zero.
If the steady state is banded, then the presence of transient shear banding can be ascertained
only if degree of banding shows a transient peak of substantially higher magnitude compared
to its eventual steady-state value. The evolution of second derivative of velocity in the
direction of momentum diffusion has also been suggested in literature to determine the
presence of transient shear banding [22–24]. The thickness of the interface between two
bands must be much smaller than the width of the bands, in order for the two bands to be
distinguishable; hence, transient flow inhomogeneities during shear startup may not always
be designated as transient shear banding. Cheng et al. [24] conducted experiments using a
shear thinning wormlike micellar solution in the Taylor-Couette geometry of a rheometer,
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where they observed banding-like inhomogeneities. To distinguish between shear banding
and transient inhomogeneities, they examined the third derivative of velocity with respect to
the wall normal direction. The presence of cusplike peaks in the third derivative indicates the
presence of shear banding. Therefore, in such cases, the second or third derivative of velocity
provides a more reliable means of identifying shear banding. However, during the course
of our study, we found that this method of distinguishing between inhomogeneities and
banding is more suitable when well-defined regions of distinct shear rates exist. Moreover,
to facilitate comparison of our results with those presented in the literature, we have adopted
the degree of banding metric in this study.

The stability of the homogeneous steady state of a shear flow was first studied by
Yerushalmi et al. [25] who proposed a model-independent or fluid-universal criterion for
existence of steady state shear banding in shear startup flow. The authors stated that “It is
shown that all values of the steady shear rate where the flow curve exhibits a zero or nega-
tive slope the flow is unstable.” This criterion has been validated using various constitutive
models with a nonmonotonic region where shear stress decreases as a function of shear rate
[26–42].

A fluid-universal or model-independent criterion for existence of transient shear banding
during shear startup flow has been proposed by Moorcroft and Fielding [20 and 43]. Ac-
cording to this criterion, in a shear startup flow, if shear stress shows an overshoot, then
during the time duration in which shear stress shows a negative slope as a function of time or
strain, the shear startup flow should become unstable and form bands of different shear rates
transiently. The authors carried out a modal stability analysis by freezing the base state
at a given instant, treating the flow to be quasi-steady (this procedure is referred to as the
‘frozen-time’ analysis) to derive the criterion for transient banding. In our previous study
[44], we discussed in detail the restrictive nature of the criterion based on the assumptions
utilised to obtain the simplified criterion. In brief, these assumptions are (i) shear startup
must be in the high shear-rate region, (ii) frozen time analysis can be used as a tool to
obtain the signature of transient shear banding, (iii) absence of Hopf bifurcation, and (iv)
only one real part of transient eigenvalue is positive at any time.

Moorcroft and Fielding [20] examined the shear startup of stretching and non-stretching
Rolie-Poly and Giesekus models using the frozen time analysis, linearized evolution of per-
turbations, and nonlinear simulations to check the validity of the criterion. They found
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that the results obtained using the non-stretching Rolie-Poly model validated the criterion,
however, for the stretching Rolie-Poly and Giesekus models, transient shear banding was not
observed even in presence of stress overshoot. The authors argued that since transient shear
banding is an elastic instability, the models that show stress overshoot at same magnitude of
strain qualify to show transient shear banding. Fielding [45] subsequently noted that while
the criterion is useful, it may not be universal.

The transient shear banding criterion for shear startup flow has been tested experimen-
tally and numerically and it has been found to be consistent in some cases, but is not uni-
versally applicable [33, 34, 44, 46–63] as discussed in Section II of our previous study [44].
Transient and steady state shear banding has been observed in shear startup of entangled
polymer solutions which can be influenced by flow-concentration coupling [36, 37, 51, 64–67].
Transient shear banding in shear startup flow of wormlike micellar systems has also been
explored, when the startup shear rate is such that the steady state is also banded or using
geometries that exhibit high shear stress inhomogeneity [34, 35, 56, 60, 68–70]. Hu et al. [60]
observed transient shear banding during shear startup of wormlike micellar solutions using
cone and plate geometry. In this study, we focus on shear startup of viscoelastic constitutive
models that can predict both monotonic and nonmonotonic constitutive curves and have no
coupling with concentration (Rolie-Poly model) [29, 31, 32, and 48] and can fit experimental
results of wormlike micellar solutions (Johnson-Segalman model [27]).

In our earlier study [44], we had analyzed the transient shear banding criterion for shear
startup flow using Johnson-Segalman, non-stretching Rolie-Poly, and Giesekus models within
the framework of the frozen-time analysis and the fundamental matrix method. The frozen-
time approach is valid only if the transient growth rate is significantly higher than the rate
of change of base-state evolution. In the fundamental matrix method [71–74], the evolution
of linearized perturbations can be obtained along with the evolution of base state. This
method also provides the growth rate of perturbations maximised over all possible initial
conditions and consequently yields more robust results compared to frozen time analysis.
We showed that the assumptions made to derive the criterion for transient shear banding
[20] are restrictive and that there is no consistent link between positive transient eigenvalue
and stress overshoot. We also showed that the transiently positive eigenvalue does not lead
to growth of linearized perturbations for the Johnson-Segalman model. Conversely, using
the Giesekus model, we showed that even a transiently positive eigenvalue is not necessary
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for transient growth of linearized perturbations.

For some cases of shear startup of non-stretching Rolie-Poly model, we found agreement
between stress overshoot, transiently positive eigenvalue and growth of perturbations (see
Figs. 6-7 of Ref. [44]), as reported earlier by Moorcroft and Fielding [20]. We attributed
the contrasting results obtained using the Johnson-Segalman and non-stretching Rolie-Poly
models to the difference in orders of magnitude of ratio of solvent to solution viscosity:
ηs = 0.115 for the Johnson-Segalman model and 10−5 for non-stretching Rolie-Poly models.
For the non-stretching Rolie-Poly model, at high shear rates, we showed that the maximum
transient eigenvalue diverges on decreasing the ratio of solvent to solution viscosity. We
also argued that if transient growth rate becomes significantly high, then inertial effects
can no longer be ignored. We found that the growth of linearized perturbations reduced
significantly in the presence of inertia suggesting that there may not be any transient shear
banding if shear startup flow is carried out for higher ratios of solvent to solution viscosity.
If the ratio of solvent to solution viscosity is less than O(10−3), then inclusion of inertia
may regularise the eigenvalue and perturbations. However, this conclusion was based on an
approximate solution in which inertia is considered only during evolution of perturbations
and not during base state. Furthermore, the growth of linearized perturbations also does
not necessarily guarantee the presence of transient shear banding since the nonlinear terms
are ignored. Therefore, it is of interest to examine whether transient shear banding prevails
in the scenario where the nonlinear terms are also considered.

In this work, we study the shear startup flow of the Johnson-Segalman and non-stretching
Rolie-Poly models using full nonlinear simulations by imposing perturbations at the begin-
ning of the shear startup. It is important to highlight that, as we revisit the criterion of
transient shear banding for shear startup flow (Ref. [20]), we specifically employ the non-
stretching Rolie-Poly model. As stated in Ref. [20], stretching Rolie Poly model lacks the
capability to show elastic instability, we restrict the study of transient dynamics only to
the non-stretching Rolie Poly model. The study focuses on shear startup under the same
parameters values discussed in Ref. [20] to facilitate a comparative analysis of results. We
discuss both the models and governing equations, and highlight the issue of realistic initial
amplitude of perturbations to study transient shear banding in Sec. II. We then explore the
effect of initial amplitude of perturbation on transient dynamics of shear startup flow in
presence and absence of inertia in Sec. III A. We also study the effect of decreasing ratio of
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solvent to solution viscosity and effect of inertia on transient dynamics of shear startup flow
and examine whether inertia (non-zero Re) regularises the effect of low ratio of solvent to
solution viscosity in Sec. III B. We discuss the salient conclusions of this study in Sec. IV.

II. MODELS AND GOVERNING EQUATIONS

We use the Johnson-Segalman and non-stretching Rolie-Poly models to analyse shear
startup of viscoelastic fluids. We consider an incompressible viscoelastic fluid between two
parallel plates that are infinite in the x∗ and z∗ directions and confined in the y-direction,
with a gap H between the plates. Both plates are at rest for time t∗ < 0, but for time
t∗ ≥ 0, the top plate moves at a steady velocity U in the x∗ direction. The variables in this
manuscript that include a superscript ∗ are dimensional, while those without a superscript
are dimensionless. In this case, the Cauchy momentum equation is as follows:

−∇p∗+∇ ·Σ
≈

∗+ f
∼

∗ = ρ

(

∂ u
∼

∗

∂ t∗
+ u

∼

∗ ·∇u
∼

∗

)

, (1)

The above equation simplified for unidirectional simple shear flow as:

−∇p∗+∇ ·Σ
≈

∗+ f
∼

∗ = ρ
∂ u
∼

∗

∂ t∗
, (2)

In Eqs. 1-2, p∗ represents the pressure, f
∼

∗ denotes the body forces ρ is the density of
the fluid, u∗

∼
is the velocity field, and Σ

≈

∗ is the total stress tensor. To simplify the analysis,
we assume that the body forces can be neglected, no pressure gradient is applied, and the
flow is unidirectional and incompressible. In this work, we seek unidirectional and fully-
developed solutions, so the pressure gradient in the x and z direction will remain zero even
during shear-startup, since the continuity equation is exactly satisfied by this flow field
(∇ · u

∼

∗ = 0). However, in the y-direction, a pressure gradient develops in order to balance
the gradient of the yy component of stress in the y-direction. This is akin to the hydrostatic
distribution of pressure in the vertical direction of in a horizontally oriented channel, with
the flow occurring in the horizontal direction. In the absence of an externally applied
pressure difference, a nontrivial pressure gradient in the flow direction will be generated in
an incompressible flow only when the continuity equation is not trivially satisfied, and the
flow field becomes two-dimensional with (at least) two nonzero velocity components. One
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noteworthy example is lubricating flow in a slider block [75], where the slowly varying cross-
section results in the generation of a pressure gradient to ensure mass conservation. For this
reason, in the ensuing analysis, we ignore the pressure term in the x-momentum equation;
this framework has been used in almost all of the literature on steady-state/transient shear
banding [20, 21, 45, 76, and 77].

We consider the total stress to be equal to the sum of viscoelastic stress and Newtonian
solvent stress contributions:

Σ
≈

∗ = σ
≈

∗+2η̄s γ̇
≈

∗, (3)

where, σ
≈

∗ is the viscoelastic stress, η̄s is the viscosity of solvent in a polymeric or wormlike
micellar solution, and γ̇

≈

∗ = 1
2
(∇u

∼

∗+(∇u
∼

∗)T ) is the shear rate tensor. We use the Johnson-
Segalman [27] and the Rolie-Poly [32] models for the viscoleastic stress (σ

≈

∗). Both models
are augmented by an additional stress diffusion term for unique stress selection in the non-
monotonic region of the flow curve in our nonlinear simulations [20, 40, and 78]. The models

are made dimensionless as follows: σ
≈
=

σ
≈

∗

((η̄s + η̄p)/τ)
, t = t∗/τ , u

∼
= u

∼

∗/U . In the above
expressions, η̄p is the contribution of polymer to the zero shear viscosity of the solution
and τ is the relaxation time of the fluid. In the case of Rolie-Poly model, τ = τD, which
represents the reptation time, and for Johnson-Segalman model τ = λ which is the longest
relaxation time. The relevant dimensionless groups are the Weissenberg number, Wi =

τU

H

which represents non-dimensional shear rate, Reynolds number Re =
ρUH

η̄s + η̄p

, and the ratio

of solvent viscosity to the zero shear viscosity of the solution, ηs =
η̄s

η̄s + η̄p

. We also assume
no-slip boundary conditions i.e., u(y = 1) =U and u(y = 0) = 0. The dimensionless form of
Cauchy momentum equation is given below:

Re
∂u

∂ t
=

∂σxy

∂y
+ηsWi

∂ 2u

∂y2
(4)

Johnson-Segalman model - The Johnson-Segalman (hereafter JS) model [27] was de-
veloped to introduce non-affine motion in the upper-convected Maxwell (UCM) model by
replacing the upper-convected derivative with the Gordon-Schowalter derivative [27, 79, and
80]. The degree of non-affine motion is governed by the slip parameter ξ . If ξ = 0, the JS
constitutive equations yields the UCM model and if ξ = 2, it reduces to the Lower Convec-
tive Maxwell (LCM) model [79]. The constitutive equation of the JS model is given by the
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following equation

σ
≈

∗+λ
□

σ
≈

∗ = 2η̄pγ̇∗
≈

(5)

and the Gordon-Schowalter derivative □

σ
≈

[79] is

□

σ∗

≈
=

(

1−
ξ

2

)

▽

σ∗

≈
+

(

ξ

2

)

△

σ∗

≈
(6)

where λ is the longest relaxation time of the polymeric solution, η̄p is the contribution of
polymer to the zero shear viscosity of the solution and ξ is fixed as 0.01 for the results
shown in this manuscript. (We have verified that the results are largely insensitive to the
specific value of ξ chosen.) The upper-convected and the lower-convected derivatives are
▽

σ
≈
=

Dσ

Dt
− (∇u)T ·σ −σ · (∇u) and

△
σ
≈
=

Dσ

Dt
+(∇u) ·σ +σ · (∇u)T , respectively, where, D

Dt
is

the substantial derivative [81]. The diffusion term is augmented to the JS model constitutive
equation for the unique stress selection [40]. The simplified dimensionless component-wise
equations of the model for unidirectional simple shear flow are

∂σxy

∂ t
=

(

−

(

ξ

2

)

σxx +

(

1−
ξ

2

)

σyy +(1−ηs)

)

γ̇Wi−σxy +D
∂ 2σxy

∂y2
, (7)

∂σxx

∂ t
= 2

((

1−
ξ

2

)

σxy

)

γ̇Wi−σxx +D
∂ 2σxx

∂y2
, (8)

∂σyy

∂ t
=−(ξ σxy) γ̇Wi−σyy +D

∂ 2σyy

∂y2
. (9)

Here, D is the dimensionless stress diffusion coefficient and the dimensional stress diffusion
coefficient is D∗ =

DH2

λ
.

Rolie-Poly model - The Rolie-Poly model is a single-mode molecular model for entangled
polymer melts with its name derived from ROuse LInear Entangled POLYmers model. This
model was developed by Likhtman and Graham by simplification of the Doi-Edwards tube
model [28 and 32]. This model also accounts for most of the molecular processes, including
reptation, convective constraint release (CCR), chain stretch, retraction, and contour length
fluctuations. The constitutive equation of the model can be expressed as follows

(

σ
≈

∗− I
≈

)

+ τD

∇

σ
≈

∗ =−2
τD

τR






1−

√

√

√

√

3

tr
(

σ
≈
∗
)















σ
≈

∗+β
(

σ
≈

∗− I
≈

)







√

√

√

√

3

tr
(

σ
≈
∗
)







−2δ








, (10)
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where β determines the effectiveness of the convective constraint release mechanism, δ = 1
2

following [32 and 82] which fixes the strength of convective constraint release. Here, I
≈

is the
identity tensor. Also, τD determines the contribution of reptation to relaxation mechanism,
τR shows the contribution of chain stretching to relaxation mechanism. The number of
entanglements is represented by Z

(

Z =
τD

3τR

)

, which consequently fixes the two relaxation
times.

Likhtman and Graham [32] further simplified the model by considering τR → 0 and
tr
(

σ
≈

∗
)

= 3+∆ (here ∆ = 0 because τR → 0 and Z ≫ 100). The simplified model is known
as non-stretching Rolie-Poly model, referred hereafter as the nRP model, whose constitutive
equation is given by:

(

σ
≈

∗− I
≈

)

+ τD

∇

σ
≈

∗ =−
2

3
τD

(

tr
(

∇
∼

∗u
∼

∗ ·σ
≈

∗
))(

σ
≈

∗+β
(

σ
≈

∗− I
≈

))

. (11)

The component-wise equations of the nRP model augmented with stress diffusion coefficient,
D in nondimensional form for unidirectional simple shear flow are as follows:

∂σxy

∂ t
=Wiγ̇

(

σyy −
2

3
σ2

xy (1+β )

)

−σxy +D
∂ 2σxy

∂y2
, (12)

∂σyy

∂ t
=

2

3
Wiγ̇

(

βσxy −σyyσxy (1+β )
)

− (σyy −1)+D
∂ 2σyy

∂y2
. (13)

Here, D is the dimensionless stress diffusion coefficient and the dimensional stress diffusion
coefficient is D∗ =

DH2

τD

[20]. The results for the nRP model are obtained using β = 0.6

and β = 1 for start-up to non-monotonic and monotonic regions of the constitutive curve,
respectively. We carry out full non-linear simulations for simple shear flow and solve Eqs. 2,
Eqs. 7-9 and Eqs. 12-13. In this study, we impose a perturbation as initial condition for u

∼

and σ
≈

which is expressed in index notation as follows:

ui = u0
i +A sin(nπy), σi j = σ0

i j +A cos(nπy), (14)

where A is the amplitude of the sine or cosine wave, n fixes its wavelength, ui represents the
components of the velocity vector, σi j represents the components of the stress tensor (the
chosen perturbation as initial condition is inspired from Ref. [20] for comparative analysis of
results. In Ref. [20], the sinusoidal wave perturbation imposed is also multiplied by a white
noise prefactor; however, we study the effect of sinusoidal and white noise initial conditions
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separately.) Here, u0
i = y and σ0

i j is a constant, 10−5. (The results obtained are independent
of the precise value of σ0

i j, if its magnitude is much smaller than unity. The perturbations
to the various components of the stress tensor are chosen as cosines, so that the velocity
perturbation can be written in terms of sines, and thus the no-slip boundary condition gets
satisfied at y = 0 and 1. In this manuscript, n (in Eq. 14) is fixed as 1, as it yields the
most unstable mode and A is considered as 10−1, 10−4, and 10−7. In this study, we also
use random noise as initial perturbation to velocity field and stress tensor. We use these
perturbations according to the equations which are expressed in index notation below:

ui = u0
i +A R(y), σi j = σ0

i j +A R(y), (15)

where R(y) is generated from a set of random numbers distributed uniformly with a mean
of 0 and a width of 1 as well as it is same for ui and σi j. We have fixed the stress diffusion
parameter D = 10−2 in this study. Furthermore, we have verified that the results (shown in
Fig. 2) obtained from the JS model are not influenced by the slip parameter, ξ , while the
results (shown in Fig. 3) from the nRP model are not affected by the parameter β .

In our discussions below, in the interests of clarity, we have incorporated some of the data
concerning linearized dynamics from our earlier work (Ref. [44]), duly acknowledged at the
relevant locations. For details on the methodology for determining the maximum amplitude
of linearized perturbations and transient maximum eigenvalue, readers are referred to Section
III of Ref. [44].

A. A note on the magnitude of shear rate initial condition

In the absence of inertia, it is not possible to specify the initial amplitude of the shear
rate because the Cauchy momentum equation is devoid of any acceleration in the inertialess
limit. In this limit, the initial value of the shear rate is actually dictated by the initial
value of σxy as given by the Cauchy momentum equation (Eq. 4) in the absence of inertia:
γ̇(t = 0)=σxy(t = 0)/(ηsWi). As a consequence, for ηs ≪ 1, the initial shear rate perturbation
is O(η−1

s )σxy(t = 0), i.e., it is much larger than the magnitude of the (prescribed) stress
perturbation. Thus, for ηs ≪ 1, if we impose an O(1) stress perturbation at t = 0, the shear
rate perturbations become much larger than unity. Note that the step change in the shear
rate, in the shear start-up protocol, is only an O(1) quantity. It is therefore unrealistic to
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impose a large (i.e. ≫ O(1)) shear rate perturbation as an initial condition in the nonlinear
simulations. The initial conditions in our numerical simulations are intended to mimic
inevitable (spontaneous) perturbations that would be present in an experiment. Thus, in
order for the initial conditions to be physically realistic, one should not have the shear rate
perturbation magnitudes to be much larger than the O(1) base state itself. In order to
address this issue, especially in the limit of small ηs, it is necessary to prescribe the initial
shear stress perturbation amplitudes in a manner that the initial shear rate perturbation is
at most O(10−1) (i.e. 10% of the imposed shear rate jump in the startup flow).

It is useful here to clarify what the imposed initial perturbations are purported to mimic
in our simulations. We consider spontaneous “external” disturbances that are unavoidable
in a laboratory experiment, as is customary in the framework of hydrodynamic stability [83
and 84]. However, there is another formulation, referred to as the fluctuating Navier-Stokes
equations [85], wherein thermal fluctuations are included in the Navier-Stokes equations in
the context of a Newtonian fluid. In that formulation, valid for a fluid at thermal equilibrium,
the magnitude of the stress fluctuations is governed by a fluctuation-dissipation theorem and
is proportional to

√

kBT η/V , where η is the fluid viscosity, kB is the Boltzmann constant,
T is the temperature in Kelvin and V is a representative system volume. Here, a reasonable
estimate for volume is V ∼ H3, where H is the gap width. In the context of stability of
cylindrical jets [86], V ∼ d3 where d is the jet diameter. Indeed it was shown that only
for ‘nanojets’ with diameter of a few nanometers, thermal stress fluctuations were shown to
affect the stability of jets. For the present geometry, if one uses H = 1 mm, and η = 1 Pa
s, T = 300 K, then one obtains the magnitude of thermal stress flucutations to be around
2× 10−6 Pa. For the same parameters, the macroscopic shear stress can be estimated as
µV/H. For V = 1 mm/s, shear stress is 1 Pa. Even if one assumes the magnitude of
non-thermal stress disturbances in experiments to be 0.1% of the macroscopic stress, this
yields 10−3 Pa, which is three orders of magnitude larger than that of spontaneous thermal
fluctuations. Such thermally-induced fluctuations are referred to as ”internal” fluctuations
by Ref. [87] and Ref. [86]. However, when a system is unstable to infinitesimal disturbances,
the physical origin of the perturbations is irrelevant, and the given state is bound to lose its
stability.

We also calculate the order of initial shear rate perturbation for both the models. For
the JS model, consider the case of Re = 0, where the initial shear rate perturbation is
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approximately 10−1, 10−4, and 10−7 for Wi = 12 and ηs = 0.16. Conversely, for the nRP
model in the absence of inertia, providing initial conditions directly to the shear rate is not
feasible. Instead, the initial values of the shear rate are determined by the initial stress
perturbation σxy(t = 0) through the Cauchy momentum equation (Eq. 4). As γ̇(t = 0) =

σxy(t = 0)/Wiηs, the shear rate perturbations become significantly larger than the stress
perturbations. For A = 10−1, the initial shear rate perturbation is on the order of 102

(equivalent to 104% of the base state shear rate for ηs = 10−4 and Wi = 30). Similarly, with
A = 10−4, the initial shear rate perturbation is on the order of 10−1 (representing 10% of the
base state shear rate), and for A = 10−7, the initial shear rate perturbation is of the order
of 10−4 (equivalent to 0.01% of the base state shear rate).

It must be noted that the value of ηs = 10−4 or 10−5 is not unrealistic and is possible in
an experimental study as shown in Ref. [88]. It is useful to estimate the possible range of
Re in shear startup experiments involving wormlike micellar solutions. We assume that the
solution density (ρ) is similar to water at room temperature (i.e., 103 kg/m3) and the gap
width between the plates or concentric cylinders is approximately 10−3 m, the zero shear
viscosity of the solution can vary from 10−3 Pa s to 102 Pa s [26, 34, and 89]. Therefore,
Re can be estimated as U/(η̄s + η̄p), where U is the characteristic velocity, and η̄s and
η̄p are the solvent and polymer viscosity contribution to the zero shear viscosity of the
solution, respectively. The maximum value of Re can be around 103U , and we can assume
a range of Re from 0.1 to 100, which can be achievable in some practical cases depending
on the value of U . In the study by Helgeson et al. [26], where steady-state shear banding
has been observed using CTAB (Cetyl trimethyl ammonium bromide) solution, the zero
shear viscosity is reported to be of the order of 1 Pa s. Therefore, in this case, the value of
Re is mainly dependent on U , suggesting that a higher U value will result in a higher Re.
Therefore, from the experimental studies reported in the literature, we estimate Re in the
range of 0.01 to 100.

The non-linear simulations are carried out using COMSOL 5.0®. The inbuilt partial
differential equation solver of COMSOL utilizes the finite element method. The domain
(0,1) is discretized into 6452 points. The results for the shear startup of the JS and nRP
models converge for 6000 to 10000 domain elements and for a fixed time step ranging between
10−5 −10−4. The relative and absolute tolerance is kept at 10−5 and 10−6, respectively. In
this study, we have also verified the numerical solutions with the results reported in the
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literature [20 and 76].

III. RESULTS AND DISCUSSION

In our earlier work [44], we demonstrated that if there is a stress overshoot during shear
startup, this does not guarantee a positive eigenvalue within the frozen-time linear stabil-
ity analysis, nor does it necessarily result in the growth of perturbations within the more
accurate analysis of linearized dynamics using the fundamental matrix approach. (Some of
the caveats of the frozen time analysis have also been discussed in Ref. [20].) The former, in
particular, has been used as a signature of transient instability in the literature [20 and 21].
While results from linearized dynamics are valid when the perturbations are infinitesimal,
the ultimate answer to the question of whether transient shear banding is present or not must
come from fully-nonlinear solutions of shear startup, which is the objective of the present
study. Here, we numerically solve the partial differential equations mentioned in Sec. II, and
determine the relevance of stress overshoot, positive eigenvalue within a frozen-time stability
analysis, and the growth and decay of linearized perturbations on transient shear banding.
We analyze the shear startup of JS and nRP models to shear rates in both monotonic and
nonmonotonic regions of the constitutive curves as shown in Fig. 1. We revisit the criterion
for transient shear banding proposed in Ref. [20] using the JS and nRP models. As the nRP
model has also been used in Ref. [20], we use the same parameter values to revisit the shear
startup of nRP model.

As discussed in Sec. I, shear banding can be identified and quantified more reliably by
the presence of a peak in the second or third derivative of velocity (because the degree of
banding metric is not capable of distinguishing between transient inhomogeneities and shear
banding) [22–24]. However, in this study, in order to compare our results with those reported
in the literature [20 and 21], we calculate the degree of banding to quantify both steady state
and transient shear banding in each case. The degree of banding is defined as the difference
between the maximum and minimum shear rates of the fluid flow between the parallel plates
[20 and 21]. If the degree of shear banding is zero, then the flow is homogeneous otherwise
it is inhomogeneous and its magnitude determines the extent of inhomogeneity in the flow.
We additionally present the corresponding velocity profiles as a function of time to correlate
them with degree of banding for the nRP model.
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Figure 1. Constitutive curves of (a) JS model and (b) nRP model. The monotonic constitutive

curve of JS model is obtained using ηs = 0.16 and ξ = 0.01 and the nonmonotonic constitutive

curve is obtained using ηs = 0.05 and ξ = 0.01. The monotonic constitutive curve of nRP model

is obtained using β = 1 and ηs = 10−4 and the nonmonotonic constitutive curve is obtained using

β = 0.6 and ηs = 10−4.

We also show the time-dependent evolution of maximum amplitude of linearized per-
turbation and transient eigenvalue for shear startup of the JS and the nRP model. Some
of these results has been published in our earlier study [44], however, these results are in-
cluded here for comparison of linearized dynamics and nonlinear simulations. Figures 2
and 3 also show time markers to facilitate analysis and compare the shear stress, linearized
perturbation, eigenvalue and degree of banding during the shear startup flow.

A. Stress overshoot and transient shear banding

We first study shear startup of the JS model for different initial amplitudes of pertur-
bation, A and Re to examine the sensitivity of transient dynamics on the initial conditions
and the value of Re. We fix ηs = 0.16 and Wi = 12 so that the shear rate is in the flatter
and monotonic region of the constitutive curve. Figure 2 shows time-dependent evolution
of shear stress, linearized perturbation, eigenvalue and degree of banding (∆γ̇ = γ̇max− γ̇min).
During shear startup, the shear stress increases, shows an overshoot and then attains a
steady state in all the three cases (A = 10−1, 10−4, 10−7). We find that shear stress for
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Figure 2. Comparative analysis of shear startup behavior in the monotonic (ξ = 0.01,ηs = 0.16,Wi=

12) (first row) and nonmonotonic (ξ = 0.01,ηs = 0.05,Wi = 12) (second row) regions of the con-

stitutive curve. (a) & (e) Shear stress is plotted as a function of time; (b) & (f) the maximum

amplitude of linearized perturbation, (G), and eigenvalue (ω) is plotted as a function of time; (c) &

(g) degree of banding (∆γ̇ = γ̇max− γ̇min) is plotted as a function of time for different initial amplitude

of perturbation, (A); (d) & (h) maximum degree of banding, (∆γ̇max) plotted as a function of initial

amplitude of perturbation, (A). The evolution of maximum amplitude of linearized perturbation,

and eigenvalue obtained through linear stability analysis, along with the time-dependent evolution

of the degree of banding from nonlinear simulations, is depicted for both cases. Markers on plots

(a)-(c) and (e)-(g) facilitate correlation of results at specific time points. The effect of the initial

amplitude of perturbation and Re on the maximum degree of banding is illustrated for both mono-

tonic and nonmonotonic cases.

all three values of A overlaps for all times and ∆γ̇ is initially of the order of A before fi-
nally decaying to zero. These results show that an imposition of perturbations with initial
amplitude A engenders a response which is only commensurate with the forcing, and this
response cannot be interpreted as a signature of a transient (elastic) instability. For the
results shown in Fig. 2(c), the system is merely adjusting itself to the imposed perturbation
before reaching the homogeneous steady state. Therefore, on this count, Fig. 2 clearly shows
that there is no instability in the JS model from nonlinear simulations.
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In Fig. 2(b), we observe a transient growth of linearized perturbations followed by their
subsequent decay and a transiently positive eigenvalue during shear startup of JS model
for the monotonic case (see Appendix). Interestingly, despite the presence of a transiently
positive eigenvalue and the growth of linearized perturbations, nonlinear simulations of the
JS model do not reveal any significant growth in the degree of banding (Fig. 2(c)). These
findings suggest that the nonlinearities inherent in the JS model have a stabilizing effect
during shear startup. Also, Fig. 2(d) shows that the maximum degree of banding (∆γ̇max) to
be of the order of A and is independent of Re.

We next study the shear startup flow of the JS model for the case when the shear rate
is in the nonmonotonic region of the constitutive curve and steady state shear banding is
observed. We find that the shear stress increases and shows an overshoot before attaining
steady state. The stress evolution data overlaps with each other in all these cases (A = 10−1,

10−4, 10−7), except just before attaining a final steady-state stress. We find that the time
of attaining steady state value of degree of banding (∆γ̇) depends on the value of A. Higher
the value of A, lower is the time required for the JS model to become unstable and attain
steady state shear banding as shown in Fig. 2(g). Also, there is no pronounced transient
increase (i.e., ∆γ̇ is not significantly greater than ∆γ̇steady−state) during the time range in
which there is a stress decay after overshoot as shown in Fig. 2(e). During shear startup at
Wi = 12 in the nonmonotonic region of the constitutive curve, the time at which degree of
banding increases, and the time of stress overshoot may seem to be close to each other (time
of increase in degree of banding= 0.3, time of stress overshoot= 1). However, for Wi = 27,
we find that the time of degree of banding increase occurs almost at the beginning of the
flow, while the time of stress overshoot is significantly delayed (time of increase in degree
of banding= 0.0004, time of stress overshoot= 0.41; data not shown). This result further
emphasizes that stress overshoot may not have any correlation with onset of banding during
shear startup of JS model with shear rate in the nonmonotonic region of the constitutive
curve.

The above results show that during the time evolution of shear startup flow, growth rate
of linearized perturbations diverges, but the degree of banding remains finite. In addition,
the ratio of ∆γ̇steady−state and ∆γ̇max is independent of Re. Therefore, for both monotonic and
nonmonotonic cases, in the presence of stress overshoot, JS model shows (i) no transient
shear banding even though the linearized perturbation show growth and decay during the
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flow, (ii) the maximum value of degree of banding (∆γ̇max) is of the order of A and varies in a
linear manner with A, and is also independent of Re, (iii) the time associated with maximum
degree of banding depends on A. Even if the shear rate is in the nonmonotonic region of the
constitutive curve, distinct transient shear banding is not observed and increase in degree
of banding begins almost at beginning of the flow and this time is much lower than the time
at which shear stress decreases after its overshoot.

We next study the shear start-up of the nRP model when the shear rate is in the mono-
tonic region of the constitutive curve as shown in Fig. 3. The shear start-up of the nRP
model under the creeping-flow assumption when the shear rate is in the monotonic region
of the constitutive curve (Wi = 30, ηs = 10−4, A = 10−1 and β = 1) has been reported by
Moorcroft and Fielding [20]. We have recomputed and included this result for comparison
purposes.

We examine if the transient dynamics is sensitive to the initial condition and value of Re.
At first, we find that shear stress evolution does not overlap with each other for different
values of initial amplitude of perturbation (A = 10−1, 10−4, and 10−7) at Re = 0 as shown in
Fig. 3(a). The velocity profiles during shear startup flow for A = 10−1 and Re = 0 show the
presence of transient shear banding with a negative velocity profile as shown in Fig. 4(a).
The corresponding evolution of degree of banding on a linear-log plot is shown in Fig. 3(c).
The evolution of ∆γ̇ as a function of time shows a sharp increase and then finally decays
to zero. The inset of Fig. 3(c) (left side) shows the early time behavior (t = 0− 0.3) on
a log-linear plot (of degree of banding versus time) and right inset of Fig. 3(c) shows the
evolution only for A = 10−4 and t = 0− 0.01. The data for degree of banding increases
linearly followed by a growth which is stronger than linear before final decay to zero on a
log-linear plot (of degree of banding time). Therefore, the linear increase in the data on a
log-linear plot (Fig. 3(c)) shows that the growth of perturbation is exponential which implies
that the shear startup of nRP is transiently (and linearly) unstable for Re = 0. However,
the exponential growth of perturbation begins almost at the start of the flow (refer to the
square symbol time marker in Figs. 3(a-c) and its inset) and may not have any correlation
with time at which shear stress starts to decrease after its overshoot. Similarly, the value
of ∆γ̇max is significantly larger than the input amplitude A as shown in Fig. 3(d). Therefore,
we can treat this as an intrinsic instability of shear startup of the nRP model.

Furthermore, in Fig. 3(b) we observe a transiently high growth of linearized perturbations
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Figure 3. Comparative analysis of shear startup behavior in the monotonic (β = 1, ηs = 10−4,

Wi = 30) (first row) and nonmonotonic (β = 0.6, ηs = 10−4, Wi = 30) (second row) regions of the

constitutive curve of nRP model. (a) & (e) Shear stress is plotted as a function of time; (b) & (f)

the maximum amplitude of linearized perturbation, (G), and eigenvalue (ω) is plotted as a function

of time; (c) & (g) degree of banding (∆γ̇ = γ̇max − γ̇min) is plotted as a function of time for different

initial amplitude of perturbation, (A); (d) & (h) maximum degree of banding, (∆γ̇max) plotted

as a function of initial amplitude of perturbation, (A). The evolution of maximum amplitude

of linearized perturbation and eigenvalue obtained through linear stability analysis, along with

the time-dependent evolution of the degree of banding from nonlinear simulations, is depicted for

both cases. Markers on plots (a)-(c) and (e)-(g) facilitate correlation of results at specific time

points. The effect of the initial amplitude of perturbation and Re on the maximum degree of

banding is illustrated for both monotonic and nonmonotonic cases.(Some of the results presented

in Figures (a)-(c) and (e)-(g) have previously been demonstrated by Moorcroft and Fielding [20].

However, in this study, we have recalculated and included these results to facilitate a comprehensive

comparison.)

which is of the order of 104 followed by their subsequent decay and a transiently positive
eigenvalue during shear startup of nRP model at Wi = 30, ηs = 10−4, and β = 1. However,
nonlinear simulations of the nRP model do not show a high growth in the degree of banding
(Fig. 3(c)). These findings suggest that the nonlinearities inherent in the nRP model have
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Figure 4. Velocity profile evolution during the shear startup flow of the nRP model fluid at Wi= 30,

ηs = 10−4, and β = 1 which corresponds to a shear rate in the monotonic region of the constitutive

curve. Figure (a) shows result for Re = 0 and A = 10−1 and figure (b) shows result for A = 10−7

and Re = 0. Figure (c) shows result for A = 10−1 and Re = 10−1 and figure (d) shows result for

A = 10−4 and Re = 10−1. Markers in figures (a)-(d) facilitate correlation of results at specific time

points with results shown in Figs.3(a)-(c). (The results presented in Figure (a) have previously

been demonstrated by Moorcroft and Fielding [20]. However, in this study, we have recalculated

and included these results to facilitate a comprehensive comparison.)

a stabilizing effect during shear startup.

Figure 3(c) shows that the time of peak of ∆γ̇ decreases with increase in value of A and
the value of ∆γ̇max also depends on the value of A. On increasing the value of A, the value of
∆γ̇max also increases but not in a linear manner as shown in Fig. 3(d). The effect of decrease in
initial amplitude of perturbation is also evident in Fig. 4(b) wherein no transiently negative
velocity profile is observed and extent of transient inhomogeneity is comparatively lesser
than that is observed at high initial amplitude of perturbation in Fig. 4(a). We also find
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that for Re ̸= 0, ∆γ̇max decreases significantly and is negligible for Re = 0.1 as shown in
Fig. 3(d) and in the simulataneous velocity profiles (Figs. 4(d) and 4(c)). In these figures,
it is evident that with inclusion of non-zero Re, the transient inhomogeneities are negligible
and velocity profile is almost linear at all values of time even at low value of ηs = 10−4. The
effect of Re on shear startup of nRP model is discussed in detail in Sec. III B.

The shear stress, eigenvalue, degree of banding and velocity profile obtained using Wi= 30,
ηs = 10−4, β = 1, A = 10−1, and Re = 0 in Figs. 3(a)-(c) and 4(a) has also appeared in
Ref. [20]. We have included these results only for comparison purposes.

We also check the sensitivity of the transient dynamics on initial conditions of shear
startup of nRP model for the nonmonotonic case. We find that, if the shear rate is in the
nonmonotonic region of the constitutive curve, the shear stress evolution as a function of
time for different values of A does not overlap as also observed in the previous case (the
initial shear rate perturbation and shear stress perturbation is the same as the previous case
i.e., shear startup of nRP model with shear rate in the monotonic region of the constitutive
curve, as the value of A, ηs, and Wi is same in this case as well). If the value of A is higher,
shear stress attains steady state at lower values of time as shown in Fig. 3(e). The evolution
of ∆γ̇ with time also confirms that the degree of banding shows a rapid increase to attain
a maximum value and then decreases to a constant value on a linear-log plot of ∆γ̇ versus
time (Fig. 3(g)). If ∆γ̇ versus time is plotted on a log-linear scale, then it becomes clear that
the increase in degree of banding is linear or stronger than linear before attaining a steady
state as shown in the insets of Fig. 3(g). This result demonstrates the exponential growth
of perturbations which is in agreement with criterion of Yerushalmi et al. [25]. However,
the time at which degree of banding begins to grow exponentially is much lesser than time
at which shear stress starts to decrease after its overshoot. In the literature [34, 35, 46–
48, and 60], the time of decrease in stress after stress overshoot is often linked with time at
which steady state shear banding structure begins to form. However, our results show that
shear banding structures starts to form at much earlier times, but may not be discernible in
experiments, and hence the shear banding structures may not be associated with the time
of decrease in stress after its overshoot.

More importantly, the evolution of ∆γ̇ with time on a log-linear plot, for the nRP model
shows a linear increase initially followed by a nonlinear increase in both cases of shear rate
in the monotonic as well as nonmonotonic region of the constitutive curve (Figs. 3(c) and
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3(g)). Because of these findings, it is clear that the linear stability analysis predicts only
the exponential growth at very early times, and soon after nonlinear effects take over, and
hence the linearized dynamics loses its relevance for times where there is a stress overshoot
and decay. The caution regarding the use of linear stability analysis in unsteady flow (shear
startup flow) to assess the occurrence of shear banding has also been pointed out by Peterson
[63].

The transiently high value of ∆γ̇ shows the presence of strong transient inhomogeneities
and the constant value of ∆γ̇ at steady state indicates the presence of steady state shear band-
ing. Figure 3(h) shows that for Re = 0, the value of ∆γ̇max is much higher than ∆γ̇steady−state,
however, ∆γ̇max depends on the value of A but not in a linear fashion. Furthermore, the
ratio of ∆γ̇max and ∆γ̇steady−state decreases with increase in Re which suggests the decrease in
sharp transient inhomogeneity with increase in Re. The high ratio of ∆γ̇max and ∆γ̇steady−state

highlights the transient inhomogeneities that are not part of gradual development of steady
state shear banding.

The sensitivity of the transient dynamics (or ∆γ̇max) during the shear startup of the
nRP model to the initial amplitude of perturbation (A) and Re emphasizes how transient
inhomogeneities are influenced by the specified conditions which is also in agreement with
observations of Ref. [21]. This observation implies that these transient inhomogeneities may
not constitute genuine transient instabilities, and are unlike the the inherent instability seeen
in steady-state shear banding.

The contrasting results of the JS and nRP models can be ascribed to the coupled effects
of value of initial amplitude of perturbation, ηs and Re. First we discuss the effect of
initial amplitude of perturbation and the effect of value of ηs and Re on shear startup
dynamics is discussed in Sec. III B. In the case of JS model, the magnitude of the initial
shear rate perturbation is not unrealistically high because the value of ηs was not much
smaller compared to unity. In the case of nRP model, the initial shear rate perturbation
becomes unrealistic because of low value of ηs if the stress perturbations are O(1). Therefore,
under the creeping-flow assumption, if the initial shear rate perturbation is realistic then
there may be no transient shear banding observed in shear startup flow of JS and nRP
models. (The change in value of initial shear rate perturbation with ηs for different cases
considered in Figs. 2 and 3 is discussed in Sec. II.)
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Figure 5. (a)Variation of maximum of degree of banding during the shear startup flow as a function

of ηs during shear startup flow of the nRP model fluid for Wi = 30, and β = 1. These results are

obtained for Re = 0. (b) Variation of maximum of degree of banding (∆γ̇max) during the shear

startup as a function of Re for the nRP model for Wi = 30, β = 1. Here, A = 10−1, and ηs = 10−3,

10−4, and 10−5. The inset shows the evolution of degree of banding (∆γ̇ = γ̇max− γ̇min) with time for

the nRP model for ηs = 10−4. Here, Re = 1, 10 and A = 10−1, 10−4

B. Effect of solvent viscosity ratio and Re

It has been reported in literature that decrease in ηs leads to more flattening of the
constitutive curve for both JS and nRP models (see Fig. 1 of Ref. [44], and Refs. [20 and
21]). The flatness of the constitutive curve can also be increased by increasing the number
of entanglements [35]; however, in this study, we focus only on the effect of ηs. Several results
have been reported in the literature [20 and 21] suggesting that increasing the flatness of
constitutive curve can affect the occurrence of transient shear banding in shear startup
flow. In this section, we focus on the effect of solvent viscosity (and, thence, the flatness
of the constitutive curve), only for shear rates in the monotonic region of the constitutive
curve. In our previous study [44], we showed using the JS model that there is no significant
change in the transiently maximum eigenvalue or the maximum value of growth of linearized
perturbation with decrease in ηs. Note that the value of ηs cannot be lowered below 1/9 in
order for the constitutive curve to be monotonic. During the course of the present study, we
found that even in the nonlinear simulations, there is no significant effect of decreasing the
solvent viscosity (from 0.16 to 0.115) on degree of banding evolution (data not shown). We
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defer the start-up to nonmonotonic regions with regard to the role of ηs to a future study.

For the nRP model, we found that there is a significant change in the transiently maxi-
mum eigenvalue or the maximum value of growth of linearized perturbation with decrease in
ηs [44]. In this study, using nonlinear simulations, we observed that as ηs decreases, ∆γ̇max

shows a steep increase for various initial amplitudes of perturbation (refer to Fig. 5(a)).
Furthermore, for very low ηs (i.e., 10−5), the peak of the degree of banding becomes in-
dependent of the initial amplitude of perturbation for values of A and Wi explored. This
finding underscores the consistency between linearized dynamics and nonlinear simulation
results. Our previous study also showed that introducing a nonzero Re resolves the issue of
the divergence of the transient maximum eigenvalue. Instead of divergence, the transient
maximum eigenvalues remain bounded at low ηs, and this constant value decreases with an
increase in Re (see Fig. 13 of Ref. [44]). In our nonlinear simulations, we found complete
alignment with linearized dynamics for non-zero Re, the divergence of ∆γ̇max with a decrease
in ηs transforms into a constant value as ηs decreases (refer to Fig. 5(b)).

Another compelling indication of unrealistic results at low ηs, and the mitigation of
these issues by introducing a finite Re, can be observed in the evolution of the velocity
profile over time during the shear startup of the nRP model at ηs = 10−5 (Fig. 6(a)). For
Re = 0, the velocity profile deviates from the linear profile and exhibits transient negative
velocities, with the most extreme local velocity reaching −15 This implies that if the top
plate velocity is 1, the local velocity of the fluid between the plates is 15 times the top plate
velocity in the opposite direction. Therefore, the unrealistic nature of results obtained due
to the low value of ηs, even with A = 10−7, and is consistent with the unbounded growth
of linearized perturbations shown in our previous study [44]. Interestingly, for Re = 0.1, the
velocity profile remains linear at all times, and no transient inhomogeneity is observed (see
Fig. 6(b)).

It is useful to contrast the large transiently negative velocity profiles (discussed above)
with experimental shear startup results. Recently, Rassolov and Mohammadigoushki [35]
obtained velocity profile evolution for wormlike micellar solution during shear startup flow
and they found that steady state is banded. During the evolution to steady state, the
velocity of fluid between two plates attains a negative velocity; whose magnitude is at most
25% of the top plate velocity. However, the maximum magnitude of negative velocity of fluid
between plates obtained for ηs = 10−4 (when shear rate is in the nonmonotonic region for
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Figure 6. Velocity profile evolution during the shear startup flow of the nRP model at Wi = 30,

ηs = 10−5, and β = 1 which corresponds to a shear rate in the monotonic region of the constitutive

curve. Figure (a) shows result for Re = 0 and A = 10−7 and figure (b) shows result for A = 10−7

and Re = 10−1.

the nRP model) can be at most 300% of the top plate velocity (as shown in Ref. [20]), which
is far greater in magnitude as compared to 25% of top plate negative velocity observed
experimentally [35]. Similarly, Boukany and Wang performed shear startup of entangled
wormlike micellar solutions and showed that the transient local velocity in the opposite
direction can be at most 0.8-30% of the top plate velocity [56]. It has been observed in
literature [20 and 21] that the maximum magnitude of negative velocity during shear startup,
if shear rate is in monotonic region of constitutive curve, is lesser than that when the shear
rate is in the nonmonotonic region of constitutive curve. Therefore, based on our results we
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conjecture that either transient negative velocity will not be observed during experiments if
shear startup is performed with shear rate in monotonic region of the constitutive curve or
the maximum magnitude of negative transient velocity profile will be much lesser than 100%
or 1500% of the top plate velocity that has been predicted by nRP model in Figs. 4(a) and
6. The comparison with experimental results further highlights the importance of non-zero
Re during shear startup of nRP model which can help in regularising the results.

Next, we examine the effect of further increasing Re (i.e. Re > 0.1) at low ηs. It is
observed that for Re ≤ 0.1, the degree of banding is not of the order of the initial amplitude
of perturbation (A), and its value is significantly higher during the shear startup of the nRP
model for the monotonic case (see Fig. 3(c)). However, for Re = 1 and Re = 10, the variation
of the degree of banding ∆γ̇ with time is of the order of the initial amplitude of perturbation
(A), as shown in the inset of Fig. 5(b). For the JS model, we have observed that the degree
of banding ∆γ̇ with time is of the order of the initial amplitude of perturbation (A) (see
Fig. 2(c)), where no transient inhomogeneity is observed even for Re = 0.

In Sec. II, we raised a question about the validity of the creeping-flow assumption in
solving the nRP model for ηs ≪ 1. There are two broad reasons as to why the creeping-
flow assumption for ηs ≪ 1 might lead to erroneous results in the numerical solution: (i)
the transient maximum eigenvalue or transient growth rate diverges with decrease in ηs

suggesting that transient growth of perturbations in nonlinear simulations can also diverge.
However, if the transient growth rate of shear rate perturbation diverges, the creeping-flow
assumption cannot hold true. This is because, while neglecting the acceleration term in the
Cauchy momentum equation, on account of it being multiplied by Re, it is implicitly assumed
that for Re ≪ 1, the acceleration term must remain finite. However, when the perturbation
growth diverges, the acceleration terms also exhibit a similar behavior, and the product
of Re and du/dt can no longer be neglected. (ii) Due to the creeping-flow assumption, the
initial shear rate perturbation cannot be specified directly and it is of the order of σxy

ηsWi
which

results in imposing unrealistic magnitudes of initial shear rate perturbation, especially when
the initial stress perturbations are kept O(1). Alternatively, these unrealistic results may
also be averted by inclusion of stretching and solving the shear startup of Rolie Poly model
at very low values of ηs [20 and 21].

It is important to note that after inclusion of nonzero Re, if the solvent viscosity contri-
bution is very low such that ηs ≤ O(10−4), then even with direct imposition of realistic shear
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rate perturbation, perturbations may eventually reach very high magnitudes. Figure 5(b)
shows that beyond a critical Re, the perturbations do not grow unbounded during shear
startup of the nRP model.

The above results show that if ηs is O(10−3 −10−1), then ∆γ̇max is of the order of A for
Re = 0 and Re ̸= 0. If ηs is O(10−4), then ∆γ̇max is very sensitive to the value of A under the
creeping-flow assumption, and is also affected by inclusion of inertial effects. For ηs = 10−5,
the change in initial amplitude of perturbation does not affect ∆γ̇max and it is only affected
by inclusion of nonzero Re. The fact that the velocity profiles during transient evolution
can be so sensitive to Re, when ηs is very small, suggests that the specific details of the
experimental conditions will likely play a crucial role in the nature of the observed velocity
profiles during shear startup.

C. Effect of initial condition on transient inhomogeneities

We have also investigated the shear startup of JS and nRP models by utilising random
noise as the initial condition (see Eq. 15). This approach ensures that the results obtained
are independent of any specific initial condition. Our findings indicate that, for the JS
model, the velocity profile remains linear at all times, with no transient inhomogeneities
(data not shown). This behavior is consistent with that obtained using sinusoidal initial
conditions.

However, for nRP model, we find that that the transient evolution is sensitive to different
initial conditions when using two distinct random noise inputs. Subsequently, the velocity
profile becomes linear after the introduction of random noise, but transient inhomogeneities
emerge at different times for different random noise inputs (see Figs. 7(a) and 7(b)). These
complex transient inhomogeneities also demonstrate the possibility of temporary negative
local velocities.

In the first case (Fig. 7(a)), we observe the formation of two distinct shear rate bands
at t = 0.2 and 0.7 due to the complex transient inhomogeneities. However, in the second
case (Fig. 7(b)), these inhomogeneities do not evolve into separate bands with distinct shear
rates. The velocity profile becomes linear at t = 1.5 in the first case, while in the second
case, it becomes linear at t = 3. Therefore, the transient evolution of the velocity profile
appears to be sensitive to the initial conditions. It is useful to point out that the earlier effort
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Figure 7. Velocity profile evolution during shear startup of the nRP model with shear rate in the

monotonic region of the constitutive curve (Wi = 30, ηs = 10−4, A = 10−1, Re = 0, β = 1) for two

different random noise (with zero mean) as initial conditions is shown in (a) and (b).

of Moorcroft and Fielding [20] used a noisy sinusoidal initial condition (see their Fig. 14),
while we use a pure white noise with zero mean. The results of Ref. [20] closely resemble our
results obtained for a purely sinusoidal initial condition (without any noise, see Fig. 4(a)),
and are quite different from those obtained using a pure white noise (with zero mean) shown
in Fig. 7. Thus, the transient inhomogeneities and shear banding seen in the numerical
simulations are rather sensitive to the nature of the initial conditions.
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IV. CONCLUSION

We presented results from nonlinear simulations of shear startup using the JS and nRP
models, to understand the importance and relevance of transient shear banding in this
flow protocol. We compared earlier results from linearized dynamics [44] with the present
nonlinear results in order to examine the extent of validity of the former. We find that stress
overshoot during shear startup does not necessarily result in transient banding, regardless
of whether the applied shear rates is in the monotonic or nonmonotonic regions of the
constitutive curve. Our nonlinear simulations reveal that transient shear banding is absent
during shear startup of the JS model for the parameter regimes explored. For the nRP
model, however, under the restricted parameter regimes of very low values of solvent to
solution viscosity (∼ O(10−4)) and in the absence of inertia, we find significant increase in
degree of banding before the steady state is reached. We also showed that for the nRP
model, the initial exponential growth of degree of banding has no relation with the time at
which stress decreases after its overshoot, regardless of whether the startup is to shear rates
in the monotonic or nonmonotonic regions of the constitutive curve.

In the inertialess limit, however, the initial shear rate perturbation cannot be prescribed
and its magnitude is instead governed by the initial amplitude of the σxy stress perturbation
and ηs. Consequently, the results for shear startup of the nRP model show a nonlinear
dependence on initial amplitude of perturbations and a discernible transient shear banding
is observed only if ηs < 10−3 and if the initial shear rate perturbations are unrealistically
high for shear rates in the monotonic region of the constitutive curve. For the JS model,
we found that the maximum of degree of banding is proportional to the initial amplitude
of perturbations, even for a six-fold increase in their order of magnitude, suggesting that
there is no intrinsic transient instability in the JS model during shear startup. We also
studied shear startup of both JS and nRP models by including inertial effects so that initial
shear rate perturbation can be specified directly. The results of JS model again showed a
linear dependence for the variation of maximum of degree of banding with initial amplitude
of perturbation, even in the presence of inertial effects. However, for the nRP model, the
maximum of degree of banding showed linear dependence on initial amplitude of perturba-
tion only beyond a threshold level of fluid inertia. This critical magnitude of Re increases
with decrease in ηs. Furthermore, our findings demonstrated that the stabilizing effect of
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inertia occurs when the transient growth of perturbations is significantly high. The occur-
rence of transient inhomogeneities during shear startup in nonlinear simulations might be
a consequence of the use of the creeping-flow assumption, in regimes where the assumption
is not self-consistent. In the absence of inertia, we also showed that maximum of degree of
banding diverges with a power law exponent of −1 on decreasing ηs. There is no divergence
of maximum of degree of banding on decreasing ηs when inertial effects are included.

Additionally, we investigated the influence of the initial condition on the shear startup
of the nRP model with shear rate in the monotonic region of the constitutive curve by
employing random noise (with zero mean) as the initial condition. Our findings revealed
that the transient dynamics of the shear startup flow are highly sensitive to the initial
condition. Instead of observing clear transient shear banding, we observed the emergence
of complex transient inhomogeneities that are contingent upon the specific realization of
the inital random noise. This suggests that the transient shear banding reported for shear
startup using the nRP model using a sinusoidal initial perturbation could be a consequence
of this specific initial condition, and hence its relevance to real experimental observations
need to be evaluated carefully.

The comparison of results obtained using the fundamental matrix method for linearized
evolution of perturbations and those from nonlinear simulations showed that nonlinear terms
mitigate the divergence of perturbations for both JS and nRP models. The results obtained
using different initial amplitude of perturbations showed that the time associated with max-
imum value of degree of banding and the maximum value of degree of banding depends on
the initial amplitude of perturbation. On the basis of these two observations, we conclude
that occurrence of transient shear banding, if any, is not always triggered by a linear insta-
bility, and is governed by the following factors: (1) the initial amplitude of perturbation,
(2) the solvent to solution viscosity ratio ηs, and (3) the inertial effects characterized by
Re. Overall, we show that the results of shear startup of nRP model are very sensitive to
initial amplitude of perturbations and the magnitude of inertial effects if ηs ≪ 1. Therefore,
there will not be any transient shear banding in shear startup of JS and nRP models if (i)
ηs > 10−3, (ii) inertial effects are included if ηs ≪ 1, because of very high transient growth
of perturbations, creeping-flow assumption is not self consistent, and (iii) realistic initial
amplitude of perturbation is imposed if ηs ≪ 1, within the creeping-flow assumption. More
importantly, the comparison of linear and nonlinear studies showed that growth of per-
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turbations as indicated by linearized dynamics may not necessarily signify transient shear
banding in the nonlinear simulations. The results from both JS and nRP models show that
the ultimate answer to whether there will be any transient shear banding or not can be
ascertained only using nonlinear simulations.
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APPENDIX

A. Linearized analysis

In Figs. 2(b) and 3(c), two key parameters are used to assess the linearized transient
stability of the system: the transient maximum eigenvalue ω and the growth of linearized
perturbations G(t).

First, the eigenvalue ω is determined through a linear stability analysis, where we linearize
the governing equations around the time-dependent base state [44]. At each instant in time,
a modal stability analysis is performed to calculate ω , which characterizes the exponential
growth or decay of perturbations. In this case, the eigenvalue ω is a function of time and
indicates whether the flow is unstable (when ω has a positive real part) or stable (when
ω has a negative real part). However, it is important to note that the accuracy of this
”frozen-time” analysis depends on the relative rates of perturbation growth and base state
evolution.

We also calculate the growth coefficient G(t), which measures the maximum amplification
of perturbations over time. The growth coefficient G(t) is defined as:
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G(t) = lim
x
∼
(0) ̸=0

sup
|x
∼
(t)|

|x
∼
(0)|

where G(t) is the growth coefficient at time t, x
∼
(t) represents the vector of the pertur-

bations at time t, and x
∼
(0) is the initial vector of the perturbations. To compute G(t), we

express the evolution of the perturbations using the fundamental matrix Y
≈
(t), such that:

x
∼
(t) = Y

≈
(t)x

∼
(0)

where Y
≈
(t) is the fundamental matrix describing the time evolution of the perturbations.

Substituting this into the expression for G(t), we obtain:

G(t) = ||Y
≈
(t)||

where ||Y
≈
(t)|| is the norm of the fundamental matrix Y

≈
(t). Here, G(t) captures the

maximum possible growth of perturbations as governed by Y
≈
(t). For further details, readers

are advised to refer to our earlier study (Ref. [44]).

B. Shear startup of JS model

The evolution of velocity profile during shear startup of JS model pertaining to results
shown in Fig. 2 is presented below as Fig. A1.
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Figure A1. Velocity profile evolution during shear startup of the JS model with shear rate in

the monotonic region of the constitutive curve (Wi = 12, ηs = 0.16, ξ = 0.01) for different initial

amplitude of perturbation, A and Re. (a) Re= 0 and A= 10−1 (b) Re= 0 and A= 10−7 (c) Re= 10−1

and A = 10−1 (d) Re = 10−2 and A = 10−4
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