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Most non-linear analysis problems, consider only the Du$ng oscillator as a representa-
tive case. In engineering analysis, it is however, also important to recognise the type of
non-linearity actually in#uencing the system. A procedure, involving structured higher-
order FRF analysis based on Volterra theory is suggested in the present work, to distinguish
a polynomial form of non-linearity from other possible forms. Volterra theory provides
concepts of linear, bilinear, trilinear, etc. kernels, which upon convolution with the excitation
force and subsequent summation can be employed to represent the response of a non-linear
system. The kernels of the system are understood as multidimensional unit impulse response
functions. The Volterra series response representation is employed in this work to facilitate
its processing in a structured manner, to extract characteristic features, which can help in
placing the system non-linearity in an appropriate class. The Volterra series platform is also
employed to make a distinction between symmetric and asymmetric forms of the restoring
force function. A multi-tone excitation procedure is further suggested, through which
higher-order kernels of the system can be constructed for identi"cation of the structure of the
polynomial representing the restoring force. The procedures are illustrated through numer-
ical simulation.

( 2001 Academic Press
1. INTRODUCTION

Characterisation of dynamic systems, from input}output data, is broadly categorised into
parametric and non-parametric identi"cations. Parametric identi"cation refers to systems
where su$cient a priori information about the mathematical structure of the class to which
the system belongs, is available. The identi"cation procedure in such cases is reduced to an
estimation of system parameters through a search in parameter space. Non-parametric
identi"cation concerns modelling in a function space by input}output mapping, for systems
where su$cient information on the mathematical structure or class is not available.

While identi"cation procedures for linear systems are fairly well establilshed [1, 2], the
wide variety of non-linearities exhibited by physical systems, makes the non-linear system
identi"cation problem complex. A review of identi"cation procedures, in applications
involving networks and devices, has been done by Haber and Unbehauen [3] for various
classes of non-linearity, such as Weiner model, Hammerstein model, Weiner}Hammerstein
model. Boyd et al. [4] and Chua and Liao [5, 6] have discussed higher-order kernel
identi"cation procedures based on Volterra series. Masri and Caughy [7] and Masri et al.
[8] have suggested non-parametric methods for mechanical spring}mass systems based on
restoring force mapping technique. Works in the area of parametric identi"cations generally
assumes the polynomial structure or a speci"c non-polynomial structure, and then the
procedure for parameter estimation is suggested. Rice and Fitzpatrick [9] have estimated
0888}3270/01/020323#14 $35.00/0 ( 2001 Academic Press
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quadratic damping due to drag force using random excitation and spectral density ap-
proach. Mottershed and Stanway [10] have developed procedure for estimation on nth
power non-linear damping. Bendat and Peirsol [11] estimated quadratic sti!ness of wave
forces in terms of a stochastically equivalent polynomial form. Studies have been carried out
by Tiwary and Vyas [12], and Khan and Vyas [13] for rotor-bearing systems modelled as
Du$ng oscillator.

However, the parametric procedures su!er from the inherent assumption of the form of
non-linearity. The prediction of the future behaviour of the identi"ed system may be in
substantial error unless the mathematical model represents the essential characteristics of
the physical system. Research works in the area of system structure identi"cation, parti-
cularly for the mechanical systems, are very few. Nayfeh [14] has suggested a combination
of perturbation and free vibration test for identi"cation of certain non-linear characteristics
such as hysteresis, di!erent forms of damping, presence of self-oscillatory terms, etc. Bendat
et al. [15] developed a general identi"cation technique from measured input}output
stochastic data for a wide range of non-linearities such as Du$ng oscillator, Van-der Pol
oscillator, dead band and clearance non-linearity.

In the present work, an identi"cation procedure based on Volterra series is suggested for
classi"cation between polynomial and non-polynomial form of non-linearities. Further, by
using the properties of higher-order kernel transforms, the series structure of the polynomial
form is also identi"ed. The procedure has been outlined for a polynomial up to the cubic
term and it can be extended for structures containing higher-order terms.

2. VOLTERRA SERIES RESPONSE REPRESENTATION

For a single-degree-of-freedom system

mxK (t)#cxR (t)#g[x(t)]"f (t) (1)

where g[x(t)] and f (t) represent the non-linear restorting force and applied excitation
respectively. The response can be expressed, in a functional series form, using Volterra
series as
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For single-tone harmonic excitation
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the response components of equation (2) are obtained as
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The general expression for the nth-order response component becomes
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The total response of the system can then, be expressed as
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It is evident from the structure of various response components [equation (6)], that odd
harmonics appear only in odd-order response components and even harmonics appear only
in even-order response components. An odd-order response component x

2m`1
(t) comprises

of odd harmonics u, 3u ,2 , (2m#1)u, while an even-order response component x
2m

(t)
contains a constant d.c. term and even harmonics 2u, 4u ,2, 2mu. This structured form of
Volterra series response components can form the basis for classi"cation of non-linearity
between polynomial and non-polynomial forms. The "rst few response components can be
separated [16, 17] through excitation of the system at di!erent force levels, a, b, c ,2 and
measurement of the resultant responses x

(a)(t) , x(b)(t) , x(c) (t)2 to get
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e
i
are the truncation errors which are generally neglected while solving equation (9) for

extracting the response components. The frequency contents of the separated response
components x

1
(t), x

2
(t), x

(3)
(t)2 can be employed to indicate whether the system is having

a polynomial form of non-linearity or not.

3. IDENTIFICATION OF POLYNOMIAL NON-LINEARITY FORM

A frequency domain analysis of the various component orders is carried out to distin-
guish a polynomial form of the non-linear restoring force g[x(t)], in the governing equation



Figure 1. Response component spectra for g[x(t)]"k
1
x (t)#k

2
x2 (t)#k

3
x3(t): (a) total response; (b) "rst-

order response component; (c) second-order response component; (d) third-order response component.
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(1), from non-polynomial forms (e.g. bilinear, coulomb, pth power type, etc.). Figure 1(a)
typically shows the response spectrum of a system with a general polynomial form of
non-linearity

g[x(t)]"k
1
x (t)#k

2
x2 (t)#k

3
x3(t). (10)

The non-dimensional response z (q)"x (t)/(A/k
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) has been numerically simulated through

a fourth-order Runge}Kutta algorithm, for a set of non-dimensional parameters:
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are separated using the order component separation technique of equation (9). Figures 1(b),
(c) and (d), respectively show the Fourier transforms z(
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(r) of the compo-

nents. It can be seen that the "rst response component spectrum z(
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(r) contains only the

"rst harmonic at r"0.4, second response component spectrum z(
2
(r) contains the second

harmonic at 2]r"0.8 alone, while the third response component spectrum z(
3
(r)

contains the "rst and third harmonics. This observation is in con"rmation with the
structure of the order components as given in equation (6). However, a non-polynomial
form of non-linearity does not exhibit such ordered harmonic characteristics. Figure 2(a)
gives the Fourier transform of the simulated response for a system with non-linearity
given by

g[x(t)]"kx(t) Dx (t) D. (11)



Figure 2. Response component spectra for g[x(t)]"kx (t) Dx (t) D : (a) total response; (b) "rst-
order response component; (c) second-order response component; (d) third-order response
component.
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It is to be noted that a non-linearity of above type can be expressed as a polynomial, with
constant coe$cients only for a constant range of response amplitude. The coe$cients of
the polynomial approximations, in general, are functions of response amplitudes. The
Fourier transforms [Figs 2(a)}(d)] of the response components, in this case do not show the
kind of structured behaviour, as seen in the case of polynomial non-linearity
[Figs 1(b)}(d)]. Similar disorder is observed in the case of a bilinear form of non-linear
function, given by

g[x(t)]"kx(t) (12)

with the dual sti!ness values k"c
1

for x(t)'0 and k"c
2

for x (t)(0. The Fourier
transforms of the non-dimensional response z (q) and the "rst response component z

1
(q) are

shown in Figs 3(a) and (b), for c
1
"0.9, c

2
"1.0 and non-dimensional frequency equal to

0.4. However, the second- and third-order components, z
2
(q) and z

3
(q) are found to be zero.

Other commonly occurring non-polynomial form of non-linearity, where the damping and
sti!ness forces take the form a[x2(t)!1]xR (t) (Van-der Pol oscillator); cxR (t)#kx (t)$F

d
(Coulomb damper); bxR (t) DxR (t) D#kx(t) (quadratic damping); cxR (t)#kxp(t)sgn(x) (for a
fractional power p, as in rolling element bearings) also do not exhibit an ordered form,
as discussed earlier, when their response is treated as a Volterra series comprising of
various ordered components. These observations can be explained by the fact that, the
procedure for ordered component separation remains valid only if the system kernels
are amplitude independent. For a polynomial form of non-linearity, the system kernels



Figure 3. Response component spectra for g[x(t)]"kx (t); k"0.9, for x (t)'0, k"1.0, for x(t)(0: (a) total
response; (b) "rst-order response component.
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are independent of response amplitude and function of system parameters only. This is seen
by substitution of the Volterra series response expression (8), in the equation of motion (1),
which yields
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While, the "rst-order kernel transform [equation 13(a)] is a function of the system's linear
parameters alone, in addition to the excitation frequency, the higher-order kernel trans-
forms Hp,q

n
(u) are functions of lower-order kernel transforms and non-linear parameters

[equation 13(b)]. For non-polynomial non-linearity, such expression of kernels in ampli-
tude-independent form is not possible. An equivalent polynomial form, in such cases, gives
rise to amplitude-dependent system parameters through its coe$cients. This results in
amplitude-dependent kernel transforms. Subsequently, the application of the method of
ordered component separation, which involves variation of the excitation amplitude, gives
inconsistent results.

These observations constitute the identi"cation procedure for polynomial form of non-
linearity, whereby a given system can be subjected to a sinusoidal excitation and the
Volterra series response components x

1
(t), x

2
(t), x

3
(t) are extracted through equation (9).

Compliance of the Fourier transforms of these response components with the harmonic
component structure of equation (6) can be checked. The system can be classi"ed as having
a polynomial form of non-linearity in its restoring force if an odd-order response compon-
ent, x

2m`1
(t), contains only odd harmonics u, 3u ,2, (2m#1)u, while an even-order

response component x
2m

(t), if present, comprises of even harmonics 2u, 4u ,2 , 2mu alone.
If the spectra of the response components do not exhibit above ordered characteristics, the
system non-linearity cannot be classi"ed as polynomial form.
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4. DISTINCTION BETWEEN SYMMETRIC AND ASYMMETRIC
POLYNOMIAL FORMS

A polynomial form of non-linearity, can be further identi"ed as symmetric or asymmetric,
through analysis of the even and odd harmonic of the response components. For a symmet-
ric non-linearity (e.g. as in Du$ng oscillator), where

g[x(t)]"!g[!x(t)] (14)

only odd orders x
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(t) of the response x(t) exist. The even orders x
2m

(t) are zero.
Expressing a symmetric form polynomial non-linearity of the restoring force in a system
through
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If xN (t) be the response for a negative excitation, !f (t), so that the governing equation is
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comparison of equations (15) and (16) gives
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i.e. for a symmetric non-linear system, the sum of response under excitations f (t) and !f (t)
become zero. However, a system with asymmetric non-linearity with at least an even
power term k
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x2m(t) in its governing equation, provides [!x (t)]2m"[x(t)]2m, leading to
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multiplying the response component x
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Addition of the above equation with equation (2), which gives the response for an excitation
f (t) and further application of condition in equation (17) for a symmetric polynomial
non-linearity gives

x
2
(t)#x

4
(t)#2"0. (20)

As the above equation is to be satis"ed for all excitation levels, it implies that

x
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Now, since even-order harmonic of the excitation frequency u appear only in even-order
response components x

2
(t), x

4
(t) ,2 [equation (6)], the above leads to the conclusion that

the response x(t), of a system with symmetric polynomial non-linearity will be devoid of any
even order harmonics of the excitation frequency (Fig. 4). However, even harmonics will
appear in response of asymmetric non-linear systems (Fig. 5).



Figure 4. Response spectrum for g[x (t)]"k
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5. IDENTIFICATION OF THE POLYNOMIAL SERIES STRUCTURE

Identi"cation of the structure of polynomial series representing the non-linear sti!ness
function g[x(t)] is carried out through probing of higher-order Volterra kernel transforms
of the system, which are obtained through subjecting the system to multi-tone excitation
forces. Such multi-harmonic signals can be readily simulated on a computer. An elec-
trodynamic shaker, connected to the computer through an analogue to-digital card and
an ampli"er can be employed to provide excitation to the system. The present analysis is
restricted to a third degree polynomial, i.e.
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Figures 6 and 7 show the second- and third-order kernel transforms H
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Equations (24) and (25) above can also be referred to similarly recognise second-order
combination peaks at u
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Figure 6. Second-order kernel transform H
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(1)#2G

1
(2)N]

G
1
(1)G

1
(3)[6G

1
(2)]

. (27)

Noting that for small damping, G
1
(1)<G

1
(2), equation (27) can be further simpli"ed as

H
3
(0, u

n
, u

n
)

H
3
(u

n
, u

n
, u

n
)
"

G
1
(0)G

1
(2)[4G

1
(1)]

G
1
(1)G

1
(3)[6G

1
(2)]

+5.33. (28)



Figure 7. Third-order kernel transform H
3
(u

1
, u

2
, u

3
) for various series structures [u

3
/u

n
"0.6]: (a) case (i):

k
2
"0.0, k

3
"0.01; (b) case (ii): k

2
"0.01, k

3
"0.0; (c) case (iii): k

2
"0.01, k

3
"0.0001.
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Similarly for k
2
"0

H
3
(0, u

n
, u

n
)

H
3
(u

n
, u

n
, u

n
)
"

H
1
(0)H

1
(2u

n
)

H
1
(u

n
)H

1
(3u

n
)
"

G
1
(0)G

1
(2)

G
1
(1)G

1
(3)

. (29)

Neglecting damping in the expression of G
1
(2) and G

1
(3) and noting G

1
(1)"1/21, the peak

ratio becomes

K
H

3
(0, u

n
, u

n
)

H
3
(u

n
, u

n
, u

n
) K+5.331. (30)

It can be concluded, thus, that the peak ratio varies between a maximum value of 5.33 for
k
3
"0 to a low value of 5.331 for k

2
"0. This is highlighted in Fig. 9, where the peak ratio



Figure 8. Third-order kernel transform H
3
(u

1
, u

2
, u

3
) for cases (ii) and (iii): (a) case (ii): [k

2
"0.01, k

3
"0.0;

(b) case (iii): k
2
"0.01, k

3
"0.001.

Figure 9. Peak ratio H
3
(0, u

n
, u

n
)/H

3
(u

n
, u

n
, u

n
) vs non-dimensional sti!ness ratio g"k

1
k
3
/k2

2
.
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H
3
(0, u

n
, u

n
)/H

3
(u

n
, u

n
, u

n
) is plotted as a function of non-dimensional sti!ness ratio

k
1
k
3
/k2

2
, for a typical damping 1"0.01. The peak ratio, can be seen to be high and nearly

constant at 5.0, upto a value of k
1
k
3
/k2

2
equal to 0.01 and a system showing such

characteristic can be deemed to belong to case (ii), with the cubic term zero. The peak ratio
is low and nearly constant at 0.05 for value of k

1
k
3
/k2

2
larger than 1000.0. Such a character-

istic feature can be employed to categorise the system to case (i). The intermediate values on
the graph of Fig. 9 can be taken to characterise systems belonging to case (iii), where both
square and cubic powers of x(t) are present in the non-linear restoring force function.

6. REMARKS

Usage of the described higher-order FRF analysis, for non-linearity classi"cation, how-
ever need to be guarded against the problem of convergence of the Volterra series [18].
Errors can be expected, particularly in the estimates of non-linear parameters for large
response amplitudes. Errors may also arise due to measurement noise, which is not
discussed here.

ACKNOWLEDGEMENTS

The authors wish to express their thanks to the "nancial aid being provided by the
Propulsion Panel of Aeronautical Research and Development Board, Ministry of Defence,
Government of India, in carrying out this study.

REFERENCES

1. S. R. IBRAHIM 1973 Shock and <ibration Bulletin 43, 21}25. Time domain modal vibration test
techniques.

2. D. J. EWINS 1984 Modal ¹esting: ¹heory and Practice. England: Research Studies Press.
3. R. A. HABER and H. UNBEHAUEN 1990 Automatica 26, 651}677. Structure identi"cation of

nonlinear dynamic systems*a survey on input/output approaches.
4. S. BOYD, Y. TANG and L. O. CHUA 1983 IEEE ¹ransactions on Circuits and Systems 30, 571}577.

Measuring Volterra kernels.
5. L. O. CHUA and Y. LIAO 1989 International Journal of Circuit ¹heory and Applications 17,

151}190. Measuring Volterra kernels (II).
6. L. O. CHUA and Y. LIAO 1991 International Journal of Circuit ¹heory and Applications 19,

189}209. Measuring volterra kernels III: how to estimate the highest signi"cant order.
7. S. F. MASRI, H. SASSI and T. K. CAUGHY 1979 ASME ¹ransactions Journal of Applied Mechanics

46, 433}447. A non-parametric identi"cation technique for nonlinear dynamic problems.
8. S. F. MASRI and T. K. CAUGHY 1982 ASME ¹ransactions Journal of Applied Mechanics 49,

619}627. Non-parametric identi"cation of nearly arbitrary nonlinear systems.
9. H. J. RICE and J. A. FITZPATRICK 1991 ASME ¹ransactions Journal of <ibration and Acoustics

113, 132}140. The measurement of nonlinear damping of single-degree-of-freedom systems.
10. J. E. MOTTERSHED and R. STANWAY 1986 Journal of Sound and <ibration 105, 309}319.

Identi"cation of nth-power damping.
11. J. S. BENDAT and A G. PIERSOL 1986 Journal of Sound and <ibration 106, 391}408. Decomposi-

tion of wave forces into linear and nonlinear components.
12. R. TIWARY and N. S. VYAS 1995 Journal of Sound and <ibration 187, 229}239. Estimation of

nonlinear sti!ness parameters of rolling element bearings from random response of rotor-bearing
systems.

13. A. A. KHAN and N. S. VYAS 1999 Journal of Sound and <ibration 221, 805}821. Nonlinear
parameter estimation using Volterra and Weiner theories.

14. A. H. NAYFEH 1985 Parametric identi"cation of nonlinear dynamic systems. Computers & Struc-
tures 20, 487}493.



336 A. CHATTERJEE AND N. S. VYAS
15. J. S. BENDAT, P. A. PALO and R. N. COPPOLINO 1992 Probabilistic Engineering Mechanics 7,
43}61. A general identi"cation technique for nonlinear di!erential equations of motion.

16. A. B. GARDINER 1968 Electronic ¸etters 4, 224}226. Determination of the linear output signal of
a process containing single-valued nonlinearities.

17. R. J. SIMPSON and H. M. POWERS 1972 Measurements and Control 5, 316}321. Correlation
techniques for the identi"cation of nonlinear systems.

18. A. CHATTERJEE and N. S. VYAS 2000 Journal of Sound and <ibration 236, 339}358. Convergence
analysis of Volterra series response of nonlinear systems subjected to harmonic excitation.


	1. INTRODUCTION
	2. VOLTERRA SERIES RESPONSE REPRESENTATION
	3. IDENTIFICATION OF POLYNOMIAL NON-LINEARITY FORM
	Figure 1
	Figure 2
	Figure 3

	4. DISTINCTION BETWEEN SYMMETRIC AND ASYMMETRIC POLYNOMIAL FORMS
	Figure 4
	Figure 5

	5. IDENTIFICATION OF THE POLYNOMIAL SERIES STRUCTURE
	Figure 6
	Figure 7
	Figure 8
	Figure 9

	6. REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

