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The equations of motion of a blade mounted on a disk rotating with variable angular 
velocity are derived. The acceleration of the disk is taken as constant and the calculus of 
variations is employed to obtain the equation governing the ensuing free vibrations. Coriolis 
forces are included in the derivation and the higher order terms due to shear deflection and 
rotary inertia are also considered. 

1. INTRODUCTION 

Equations of motion of cantilever blades mounted on a disk rotating at a constant speed 
have been considered by various authors, particularly by Carnegie [I] and Rao and Rao 
[2]. The effect of Coriolis forces, which give rise to several non-linear terms, was considered 
by Carnegie [3]. Rao and Carnegie 143 have shown that the influence of Coriolis forces is 
of importance only for long and slender blades and high speeds of rotation. 

The importance of non-linear terms arising due to Coriolis forces and other higher order 
effects on the stability of helicopter rotor blades has been considered by several researchers; 
e.g., Ormiston and Hodges 151 and Subrahmanyam and Kaza [6]. However, all these 
studies pertain to blades rotating at constant angular velocity. 

Irretier [7] and Rao and Vyas [8} have obtained the forced vibration response of turbine 
blades during operations such as step-up and -down, involving variation in angular velocity 
with time. They have shown that the acceleration values have a significant influence on 
the blade response. Rao and Vyas [9] have shown that with proper acceleration rates of 
a rotor the life of a blade can be significantly improved. 

In the turbine blade studies mentioned above [7-g], higher order effects due to Coriolis 
forces, rotary inertia and shear deformation have been neglected. Thus, the resulting 
equations are linear in nature. These higher order effects can be significant for the response 
of long rotor blades. Furthermore, the influence of acceleration of the rotor blade may 
also be significant, as in the case of turbomachine blades. In this paper, the governing 
equations of motion of cantilever blades mounted on a disk rotating with constant angular 
acceleration are derived by considering the Coriolis forces and higher order terms of shear 
deflection and rotary inertia. 

2. KTNETIC ENERGY 

Consider a blade of length I and uniform cross-section with area A, mounted on a 
rotating disk of radius R. The x axis is located at the root of the blade, parallel to the axis 
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of rotation, and the y axis in the plane of the disk. The z axis is along the length of the 
blade passing through the centroids of all the cross-sections. For simplicity the blade is 
considered to be straight, without any pretwist and asymmetry: that is, the blade is execut- 
ing pure bending oscillations in the y-z plane. ti and iii are axes fixed in space. At the 
instant shown, the blade is at an angle r, as shown in Figure 1, given by I- = mot f: at’, 
where o. is the initial angular velocity of the disk and a is the constant angular acceleration 
(a list of nomenclature is given in Appendix C). 

With reference to Figure 1, the displacements of an element at a distance z from the 
blade root, in the a and N directions with respect to the disk center, are 

m=(R+z-A) sin r+ycos r, n=(R+z-A)cosT-ysinr. (1) 
The corresponding velocities are 

rir= {j+f(R+z-A)} cos r-(d +py) sin I-, 

ri={-)i+f(R+z-A)}sinr-(d+py)cosT. 
(2) 

The kinetic energy due to translation of the blade element of length dz is dT, =i 
pA dz(ti2 + ri2) and hence 

T,= 
I 

I 
;pA(rit2 + ri2) dz. (3) 

0 

The kinetic energy due to rotation of the blade element is dT,=$pl,, dz(f + &,)‘, and 
hence 

s 

I 
T, = ;pZ,,(i’+ q&)2 dz. (4) 

0 

Thus, the total kinetic energy is 

T=T,+T,= ‘{~pA(ri~~+ri~)+fpZ&‘+q&)~}dz. 
f 

(5) 
0 

With the help of equation (2) and r= oat + ia? and f= oo+ (xt, the kinetic energy 
expression (5) can be expressed as 

T= 
s 

‘;pA($‘+d’) dz+ 
I 
fpA(~~+at)~{(R+z-A)~+y~} dz 

0 s 0 

I 

+ 

s 
‘pA(o,,+at){$(R+z-A)+ydJ dz+ ~pZ,,{(w~+at)+~~}~dz. (6) 

0 s 0 

Figure 1. Displacement of a blade element mounted on a disk rotating at constant angular acceleration. 
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In equation (6), the first term on the right side accounts for blade inertia, the second term 
accounts for the effect of centrifugal force, the third term accounts for Coriolis force, while 
the fourth refers to rotary inertia. 

The inward displacement of an inextensional blade is given by 
A = 1 - s cos (Pb( 5) d& Noting that y’ = sin (bb, one has A = 1-j: Jm dt. 
Expanding the square root term and t~n~ating the series yields 

,J+; ‘yr2dz 
s 

and A =&.‘&) ‘yt2 dz. (7) 
0 I 0 

Hence, equation (6) can be written as 

+ 
f 
’ fpl,,j(oo+ at) + i&j2 dz. 

0 

(8) 

3. POTENTIAL ENERGY 

The potential energy expression, with account taken of the shear deformation, can be 
shown to be 

(9) 

4. APPLICATION OF HAMILTON’S PRINCIPLE 

I-Iamilton’s principle states that if L= T- F’, then j’:: L dt, taken between any arbitrary 
intervals of time (t, , tz), is stationary for a dynamic trajectory. Therefore, 

:&((wo+ at)+ g&J2 dz dt 

F (y’ - #bj2 + ; EI&i2 dz dt. (W 
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The subject of the calculus of variations (see, e.g., the book by Fox [IO]) has been fully 
exploited by many researchers in the field of vibration problems, as it offers a very powerful 
tool in deriving the equations of motion and the corresponding boundary conditions. Dym 
and Shames [ 1 l] have given a general treatment of this subject as applied to the problems 
of solid mechanics. It can be observed here that it is most expedient to use the calculus of 
variations in deriving the equation of motion for the blade under consideration, by apply- 
ing Hamilton’s principle to equation (IO). With the help of the transformation (see refer- 
ence [3]) 

a z s a i 
at, y" dz=% y’* 

s 
dz, 

I 

the first term on the right side of equation (10) can be written as 

This can be re-expressed as 

where RI =1-z. With higher powers of A neglected, the second term on the right side of 
equation (10) can be written as 

+ ;RA(m,,+ol)‘{(R+z-$=y.‘dz)l+y*}dzdl 

12 1 
= ss (13) 

II 0 

The third term on the right side of equation (10) is 

= pA(o,+ at));(R+z) dz dt 

Z 
yr2 dz+;y $ (14) 

From equations (IO), (12), (13) and (14), one has 
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+ pA(w,,+at)j(R+z) dz dt 

12 1 

+ ss $PL.~((oO+crt)+Qib)* dzdt 
II 0 

Carrying out the extremization on the first term on the right side of equation (15) yields, 
12 i’ 12 f 

6 
ss 

$p,4[y2 + R:(y’j’)‘] dz dt = 
ss 

@[j@+ R:y’l”(y’Sj’+5”6y’)] dz dt. 
fl 0 0 0 

Integrating hy parts, neglecting higher order terms and noting that variations are zero at 
t=t, and t=tZ, one obtains 

12 1 

s 
fl 

I2 1 

fpA[j2 + R:(y’j+)‘] dz dt = - 
II 0 s.T 

pAjk5y dz dt. (16) 
rl 0 

Similarly, the second term on the right side of equation (15) yields 

where 

(17) 

The third term on the right side of equation (15) yields 
12 1 

6 
ss 

12 / 
pA(wo-t-at)$(R+z)dzdt=- 

11 0 ss 
pAa(R+z)iSydzdt. (18) 

II 0 

For the variation of the fourth term in equation (15), one has (see Appendix A) 

I 

{ay+(wo+at)~)y’-y” fay+ (coo+ at)*) dz 

y’y dz+$y’-y” S(idz-; $l;y.idz} 

a ’ -- 
s I 2 0 

yj2 dz Sy dz dt. (19) 
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The variation operation on the fifth and sixth terms in equation (15) gives 
12 1 rz 1 

6 
Is 

;pZ~,{(oo+at)+&}2dzdt=- 
ss 

. . 
@,,(a + 4bj6’$b dz dt, (20) 

(1 0 rl 0 

_ (y’ - +bjd&b dz 

(21) 

5. EQUATIONS OF MOTION 

Using Hamilton’s principle, one has, from equations (16)-(21), the following equa- 
tions of motion and corresponding boundary conditions : 

pAji-pA(wo+atj2{y+R2y”-(R+z)y’} 

+2~A(w,+ul){jy’-yrjZ’fdz-j~y’j’dz} 

+pAo{(R+z)+yy’-;j;y’2dz-yf’~Z’ydzj-$$y”-#;)=0, (22) 

Er,d#‘,n + (AGlk)(y’ - #bj - @,,(a + 4b;b) = 0, (23) 

y=&.=o at z=O, (A Glk)(y’ - 46) = 0 and EIX,&,=O at z=l. (24) 

With the help of the equations given in Appendix B, the equations of motion (22) and 
(23) can be combined to give 

Equation (25) can be rewritten as 

,?&y”” + pA j - (coo + atj2{y + R2y” - (R + z)~‘} 

kpELx 
- PLY + - 

G 
jY’+I~v~&2j=-pAa(R+z). 
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This form of the equation of motion reveals the presence of a pseudo-static force term 
f-pAa(R + z)] arising due to the acceleration conditions. The origin of the pseudo-static 
force term can be readily traced back to the Coriohs effects. 

For a disk rotating with constant angular speed (a =O), and with shear deformation 
ignored (k=O), equation (26) reduces to 

This equation is the same as that derived by Carnegie [3] for the case of constant speed 
of rotation. 

6. COMMENTS 

The governing equations of motion of a cantilever blade mounted on a disk rotating 
with variable angular velocity have been, derived with account taken of Coriolis forces 
and higher order terms due to shear deformation and rotary inertia. The equation is a 
non-linear integro-partial differential equation. A solution of this equation can be obtained 
by using a Ritz averaging principle to ascertain the importer of Coriolis forces and the 
resultant pseudo-static force term under transient conditions of operation. Such an analysis 
may be carried out on long flexible helicopter rotor blades, to investigate the dynamic 
behavior under Coriofis forces and transient conditions of operation. 
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APPENDIX A 

Let 

Upon replacing one of the z variables by 8, this becomes 

(2 1 ss e 
I= 

II 0 
y” d0+;y ; 

For the variation of 6(y) of y it follows that 

‘2 ’ 
z+ 6Z= I( 11 0 

ipa(w,,+ar)iy+6$) ~oe(yf+Sy’)‘dB 

+(y+Sy)$ e (y’+Jy’)*de 
s 

dzdt. 
0 

(15b) 

6.41) 

From these two equations (15b) and (Al), one can write 61 neglecting the second order 
terms, as 

(_$‘6y’+y’61’1) de dz dt 

s 

e 
~‘9’ de dz dt 

0 
‘2 1 

- 
ss s 

e 
pA(wo+ 49 y’6y’ de dz dt 

II 0 0 
r2 1 

ss s 

e 
- ;pA(wO + at)6j y” de dz dt. 

rt 0 0 
642) 

Now the first term on the right side of equation (A2) is 

e I2 1 e 

pA(wo+ NY 
s 

(j’cSy’+y’S~‘) de dz dt = 
ss 

y’6y’ de dz dt. 
0 I! 0 

Integrating by parts and noting that the variations are zero at r = t, and t = t2, one obtains 

‘2 1 ss s e 
pA(wo+ at)y (j’6y’+y’6$‘) de dz dr 

11 0 0 

12 1 

=- ss pA{ay +(Oo+@P) [Y SYlo- 
1, 0 

{ ’ ’ joey”6ydtI)dzdr. 
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Replacing 8 by z and since 6y=O at z= 0, one has 

f2 1 

jj 
pA(oo+at)y ’ (5”6y’+y’iQ’) d0 dz dt 

11 0 j 0 

33s 

Effecting the transformation (see reference [3]) 
Z I 

(ay+(wo+at)y) y”bydz=y”&y 
j j 

(ay+ (coo+ at)jl) dz, 
0 I 

one can write 

'2 1 

jj 
pA(o,+ at)y ’ ($‘Sy’+y’iTy) d0 dz dt 

fl 0 j 0 

=-- ~ay~(~o+a~)~~y’~y-y~~y ‘{ay+(m,faf)~ (A3) 

Similarly, the third term on the right side of equation (A2) is 

12 1 
- 

jj 
pA(w,+ at)+ 

0 0 s 

6 r2 1 
y’6y’ d8 dz dr = - 

0 ss ft 0 

~~iw,ia~)~i’-l*jlidz~~ydzd~ 

(A4) 

and the fourth term is 
12 l 

-j j s 

0 
~~~(~o+a~~~~ ye2 de dz dt 

fl 0 0 

=jty j:ipA{a j: Y’~ dz+ (wo+ at) i j:y”dzj8ydzdt. (A5) 

I-king equations (A3)-(A5) in equation (A2) then yields 

(ay+(w~+at)jjy'-y" (ay+(oo+at)9f dz+(oo+at) 

x{yy<- j;y’y’dz-y” j=‘f dz-; $ j;y’2dz}-; j;y’2dz]Sydzdi. (A6) 

APPENDIX B 

The total slope of the beam is given by 

y’=#s+#b, 

The shearing force on the beam is given as 

F= AG&/k, WI 
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where k is a factor allowing for non-uniform shear stress distribution over the beam cross- 
section. 

The bending moment M is given by 

M=El,,&. 033) 

Equating the forces and moments on the beam elements results in the following 
equations : 

F’= pAj;, A.4 ’ = I,,Q& - F. (B4) 

APPENDIX 3 : NOMENCLATURE 

A 
E 
F 
G 
I xx 
k 
1 
L 
M 
m,n 
R 
T 
I 
V 
xx, YY 
Y 
i!z 
z 

area of cross-section 
Young’s modulus 
shear force 
shear modulus 
second moment of area about xx axis 
shear distribution factor 
length 
Lagrangian function 
bending moment 
linear displacements in A? and R directions 
disk radius 
kinetic energy 
time 
potential energy 
co-ordinate axes 
displacement in y direction 
longitudinal axis 
co-ordinate measured along the blade 

constant angular acceleration of the disk 
instantaneous angular velocity of the disk 
initial angular velocity of the disk 
inward displacement of the blade element 
mass density 
slope due to bending 
slope due to shear 
angular displacement of the disk 

A dot denotes differentiation with time: thus, ,‘, 
A prime denotes differentiation with z: thus, y’. 


