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Abstract

Functional form input—output representation through Volterra series has been widely used for non-linear
system analysis and non-parametric system identification. Recent research work shows that the series
representation can be suitably employed for parametric identification also. However, the classical Volterra
series is based on a single-input and its application is limited to analysis and identification of single-degree-
of-freedom system only. The concept of single-input Volterra series has been extended to multi-input
Volterra series by Worden et al. through definition of direct and cross-kernels. The present study employs
the multi-input Volterra series and develops a structured response representation of various harmonics
under multi-input harmonic excitations. Kernel synthesis formulations are developed for a polynomial
form non-linearity with general square and cubic terms. It is shown that higher-order direct and cross-
kernel transforms are functions of the first-order kernel transforms and the non-linear parameter vectors. A
parameter estimation procedure based on recursive iteration is suggested and illustrated for a two-degree-
of-freedom system with square and cubic stiffness non-linearity. Numerical simulations and error analysis
are presented for typical rotor-bearing system parameters.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The functional form representation of input—output relationship through Volterra series
provides a structured mathematical platform for non-linear system identification. The series
represents non-linear response through a set of multidimensional kernels, known as Volterra
kernels. Fourier transforms of these kernels provide the definition of higher-order kernel
transforms or higher-order frequency response functions (FRFs) [1]. Earlier works using Volterra

*Corresponding author. Tel.: +91-512-597-040; fax: +91-512-590-007.
E-mail addresses: animeshch@rediffmail.com (A. Chatterjee), vyas@iitk.ac.in (N.S. Vyas).

0888-3270/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0888-3270(03)00016-5



458 A. Chatterjee, N.S. Vyas | Mechanical Systems and Signal Processing 18 (2004) 457—-489

series mainly concentrated on non-parametric mapping through identification of the Volterra
kernels in time domain [2,3], or the kernel transforms in frequency domain [4-8]. These
procedures either approximate the response series to its first term, or extract the first few response
components through response component separation method. The consequent error in
identification due to finite term approximation depends on the convergence characteristics of
the response series. Volterra series, being a power series, suffers from the inherent problem of
limited convergence. Tomlinson et al. [9] studied the convergence of first-order FRF of a Duffing
oscillator under harmonic excitation and presented a simple formula for determining the upper
limit of excitation level for series convergence at natural frequency of the system. Chatterjee and
Vyas [10] defined a critical value of the non-dimensional non-linear parameter for response
harmonic series convergence and observed that the limiting value of the parameter is a function of
excitation frequency and number of terms, k, in the response series approximation.

It can be shown that for polynomial form of non-linearity, higher-order kernel transforms or
FRFs are related to the first-order FRF through the non-linear parameters. The procedures for
identification of kernel transforms, thus, can be easily extended to estimate the non-linear
parameters from the extracted first- and higher-order kernel transforms. Gifford and Tomlinson
[11] used stochastic excitation and curve fitted a non-linear multi-degree-of-freedom parametric
model to measure the FRF data. Lee [12] used method of harmonic probing and extracted the
response components of first harmonic through component separation technique. First- and
higher-order kernel transforms were then computed from the separated response components and
non-linear parameters were estimated using the relationship between the higher- and first-order
kernel transforms. Chatterjee and Vyas [13] have suggested a recursive iteration technique, which
computes the first- and higher-order kernel transforms recursively from the measured response
harmonic amplitudes. The response series is considered with an optimum number of terms
governed by the convergence criterion.

The concept of single-input Volterra series has been recently extended to multi-input Volterra
series by Worden et al. [14]. It has been shown that the extended response series involves direct
kernels as well as cross-kernels. The present study employs the multi-input Volterra series and
develops the response structure under harmonic excitations. Generic expressions for response
harmonic amplitudes are presented and kernel synthesis formulations are developed. It is shown
that higher-order direct and cross-kernel transforms are functions of the first-order kernel
transforms and the set of non-linear parameters representing polynomial non-linearity. The
parameter estimation procedure based on recursive iteration, developed for a single-degree-of-
freedom system, is extended and illustrated here for a two-degree-of-freedom system with square
and cubic stiffness non-linearity. Numerical simulations and error analysis are presented for
typical rotor-bearing system parameters.

2. Single-input Volterra series response representation

Volterra series response for a general physical system with f(¢) as input excitation and x(z) as
output response is represented by

x(t) = x1(8) + x2(0) + x3() + - + x,(6) + - (1)
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with
o0 o0
x,,(t):/ / hy(ty, oo t)f (6 —1y)... f(t — 1) d1y...d7,. (2)
— 0 — 0

hy(t1, ...,7,) 1s the nth-order Volterra kernel and its Fourier transform provides the nth-order
FRFs or Volterra kernel transforms as

o0 0 n
Hy(wr, ..., 0p) = / / ha(xis ot [ [ dry .. da,. (3)
—© —© i-1
For a single-tone harmonic excitation
A A _;
f(t) = Acoswt = Ee’“” + Ee’f“” (4)
the expression for the nth-order response component, following Eq. (2), can be obtained as
A\" ,
xa(1) = <5> > "CHD () (5)
prq=n

where the following brief notations have been used:

H;p q(w) I_Iﬂ(w , W, —@, ..., _(D)5 (Up,q = (p - q)a)
\_\,.__/ —_———
p times ¢ times

The total response of the system then becomes
o0 A n .
x(t) = — "C, HP(w)e/“r4", 6
® ;1:(2) 3 ratye) ©)

Combinations of different p and ¢ result in various response harmonics at frequencies w,, =
w, 2w, 3w, etc. and the response series given in Eq. (6) can be written in terms of its harmonics as

x(1) = Xo + |X(w)lcos(wr + ¢)) + [ X (2w)cos(2wt + ¢,) + [ X (Bw)|cos(Bwr + ¢3) + -+ (7

where the response harmonic amplitudes, X(nw), are obtained by collecting all the terms
associated with the exponential ¢”»¢' in Eq. (6) for w,, = (p — ¢)w = nw and are given by

_ - é 2nZn nn
Xo=>" 5 CoH3 ()

n=1
X(nw) = Z ogi(nw) and ¢, = L X(nw) 8)
with
n+2i-2
O'l'(l’l(l)) -2 <§> n+2i— 2C Hnnjrrél 1,i— l(w) (9)

For a system with polynomial form of non-linearity given by

mi (1) + ex(t) + k1x(2) + kax?(1) + ksx*(£) = f (1) (10)
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the higher-order kernel transforms are related to the lower-order kernel transforms through non-
linear parameters [10] as follows:

H
1) = — )| ST e B @) 1 G HEE o)

q pitqi=n;
ny+ny=n

ths > MG HE (@)} (R Cp HP ()} C HE ()} | forn>1. (1)

pi+qi=n;
ni+ny+n3=n

A higher-order kernel transform thus can be synthesised using Eq. (11), from the values of first-
order transforms and the non-linear parameters.

3. Multi-input Volterra series response representation

The response measured at the jth station in a multi-degree-of-freedom system under inputs
Ja(0),f5(2), ..., applied at stations a, b, ..., can be written as [14]

Xty = XV + 9@ + 2P0 + - (12)
where xY(7) is the nth-order response component at the jth station. First-order response

component at the jth station is formed as a summation of responses due to all the first-order
components resulting from each individual input force and is expressed as

D) = xF90) + () + - (9
with
w%g:/ O @folt — 1) dry

() = / Rt — 1) d1y, ete.
— 00
The first-order component can, therefore, be written as
o= > [ e . (14)
n=a,b,... Y —®
The kernels h?:")(tl) for n =a,b, ..., represent the linear impulse response functions, and the

corresponding kernel transforms are

HY’?)(Q)I) = / h(l]'n)(rl)e*]wlfl dr;. (15)

—

The second-order response component x(zj)(t) is given by

Ho= > > /_j/_Zhg:nm)(n,rz)ﬁl(t—rl)f,h(t—rz)dr]drz. (16)

n=ab,... n,=a,b,...
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Kernels h(zj"“”z)(rl, 1,), for 7, = n,, are called second-order direct kernels, whereas for 1, #1,, they
are called second-order cross-kernels. Fourier transforms of these direct and cross-kernels give the
respective direct and cross-kernel transforms as

i o 0 T .
H§’"7‘"2)(w1,w2) _ / / h(zl-?hﬂz)(rl’Tz)e—J(w1‘E1+wz‘rz) dryde, fory,n, =a,b, ... (17)
— o0 — 0

Proceeding similarly, the general nth-order response component can be written as

o0 0 o0
SLORED SEED DENED SR [ ey B LSRN
r’n:a’b"" -® % %

m=ab,... ;y=a,b,...
S 7]1(t7‘[1)'--f1‘1n(t7}rn) dTl...dTn. (18)

where the kernels hg:""""”) (ty, ...,Ty) represent the nth-order direct and cross-kernel functions.
The nth-order kernel transforms are

o0 o0
zw%~wwhm¢wy:/ .“/ RUMm) (g g e S @rmt et om) oy dr, (19)
— 0 — o0

For m number of inputs, there would be »" number of nth-order kernels for each measurement
location j and a system with N degrees of freedom would be characterised by a set of Nm" number
of nth-order kernels. This shows that analysis of multi-degree-of-freedom systems with multi-
input excitation involves a large number of kernels. However, the number of kernels can be
significantly reduced using symmetry considerations as

h(zj:ab)(fl , Tz) + h(zj:ha)(fl , TZ) N Zh(zjlab)(rl , 1—2)

hg"zaab)(n, 1,73) + hg:baa)(ﬁ, 72,73) + h(gj:aba)(ﬁ, 72, Ts)—’3h(3j:aab)(fl, 72,73)

and so on. The rule of symmetry is also applied to the kernel transforms and all kernel transforms
with the same set of frequency arguments are considered identical irrespective of the order of
arrangement of the arguments.

4. Response structure under harmonic excitation

A multi-degree-of-freedom system with two inputs f,(¢) and f;(¢) is considered here for general
illustration of the response characteristics. For harmonic excitation

fo(t) = Acoswit, fp(t) = Bcos wrt
the response components at a station, j, are obtained from Eq. (18) as

oA o . B0 A
X (1) =5 H{ (e + 2 HI (e

+ complex conjugates (20a)
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B?
)(of HV““)(wl,—ww H(”’b)(wz, — )

A " ‘ B> .. ,
+ _H(].aa)(wl,wl)eJZU)lt + _Hgbb)(wz’ wz)e]szl

4 4
AB AB . :
: H(] ab)(w w2)e](wl+w2)t THg.ab)(wla _wz)e](wl—wz)t
-+ complex conjugates (20b)

343
(0 = HO “Non, 01,005 + == H{ (1, 01, —01)e™
B - ; 3B . .
+= HY (03, @3, 02)e>2 4 < HY (03, @, — )™
348’ 34’B
+ = HY (o, 03, —0)d ! + 2= HY 01, 01, 00)e ™
34°B 34’°B
3 H(/ aab)(wl,wl’wz)e/(2wl+wg)t 8 H(/ “”b)(a)l,col, (1)2)61(2("1 )t
3AB? 3AB?
8 H(/ abh)(wljwz,wz)e/(Zwarwl)t 8 H(] abb)( CO],Q)Q,G)Q)el(sz o))t
+ complex conjugates. (20¢)

The generic expression for the nth-order response component can be developed as
. 1 ! N ' ;
XE{)(I) — i E A]H-qBH-u Cp’q,s,uH’(j'a(l’ﬂnh(‘H”))p’q""u((i))elwp’q’x‘"[ (21)

where HY“wobenlp ““*(w) denotes the nth-order kernel transforms with f£,(¢) considered (p + ¢)
times and f3(¢) considered (s + ) times in the convolution integral, i.e.

Gaaa...bbb...
. \-\/—’\w—)
ji:a s+u) )P4 S, U _ p+q times  s+u times
H,(,] o+l (CU) - Hn (wl, ooy — D1y e, W2, Loy, — WD, ,)
ptimes g times s times u times
and
n!

Wp,q.su = @ - Q)wl + (S - u)w% Cp,q,s,u =
pq:siu!

Total response xU)(¢), at the jth coordinate of measurement, then becomes

0
x(/)(t) — Z % Z Ap+qu+u Cp,qjs,uH,(lj:a(‘”““b(””))p’q’s’u((,l))ejw”"”s’”[. (22)
n=1
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The response will consist of fundamental harmonics at w;,w, along with higher-order
harmonics of the general form (m;w; + mym;). Collecting terms with p —g=m; and s —u =
m, from series (22), one obtains the response amplitude for a general higher-order combination
tone as

+2 +2
XD (mio1 + myo) = Z2n+2z Z AMTP BT o ppamy s

i=1 pts=i—1
(/~a(m1 +2p)b(n12+2:))ml +p.p,mr+S,s
Hn+2i72 (Cl)) (23)

where n = |my| + |my|.

5. Higher-order kernel synthesis

Similar to the case in single-degree-of-freedom systems with polynomial non-linearity, higher-
order kernels in multi-degree-of-freedom system can also be represented in terms of lower-
order kernel transforms and non-linear parameters. This is illustrated here for a two-
degree-of-freedom system with general form of polynomial non-linearity up to the cubic
term:

ML (1) 4 Cxx (1) + o (1) + k() + kyy(2) + KSOx3(0) + K5 x(0)3(0)
F IS0 4 KO0 + SRy + S x (02 (1) + KV () = file) (24a)

(1) + (1) + €y 3 (0) + KyX(8) + Ky 3(8) + K5V (1) + K5 x(0)p(2)
KDY + KO0 + K (0p(n) + k“y”xmy (1) + K23 (0) = £,(0). (24b)
The parameters involved in the above equations are:
Linear parameters:

m, O
[M]=[ , [Cl=

0 m, Cyx  Cyp kye  kyy

Cox ny], and [K] = [k” k‘*y]. (25)

Non-linear parameters of second order:
The set of second-order non-linear parameters can be arranged in a vector form as

{K2x}
Ko —
{K2} {{sz} }

with

Koy = (520, KS2 ISP and - {Koy b = (K557, K52, K57y (26)

The first number in the subscript indicates the order of the non-linear term and the
second number indicates the response coordinate to which it corresponds. The superscript
notations indicate the product combination of the response coordinates associated with the
parameter.
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Non-linear parameters of third order:
The set of third-order non-linear parameters can similarly be arranged in a vector form as

{Ksx}
Ksh =4,
{K3y}
with
(K} = { kg«;«’Cx), kg(yy) k(Wy) k(xyy)}T and { K3}} = { k(’CXV) k(VW) k(sjjxy)’ kgf;yy)}T (27)

with similar notations as in the case of second-order non-linear parameters above.

5.1. First-order kernel transforms

For extraction of first-order kernels, harmonic excitation of the form f,(f) = A cos w;¢ and
Jy(1) = Bcos wt is considered. The Volterra series response for this multi-point excitation, from
Eq. (22), is

A XX T B X: 1 A2 XXX Bz X
x(t) = EHg - )(w1)e’w'l + EHE 'y)(wz)e’wzt + jHé - )(w1, —my) + 7H§ ‘yy)(a)z, —))

A% ex : B : AB

+ g H (1,00 4 B (0, 00) ! 4 52 HY (01, )
AB (i . CoA :

+7H§X'm(w1,*wz)e/(wl_w” +§H§x'mx)(w1,w1,w1)e’3w‘t
34° (. : B :

+ T Héx.xxx)(wl’ o1, _wl)e/a)lt + §H(x.yyy)(w2’ W, wz)eﬂwzt
3B} 34°B

+ = : H(X}yy)(a)z,wz, wz)e}wzt i H(‘C WY)(wI’ wl,a)z)e"‘m
MTBng:xxy)(wl’ w1, wz)ei(2w1+wz)t i 3/?g BH(X xxy)(wh w1, _wz)ej(2w1 )t
B B 01 0m, —0m) + A HE 01, gl
3AB?

+— g H(””)( w1, w7, w7)e/*?2 V" | complex conjugate terms

+higher-order terms (28a)

Ao ot . B ow) ot | A ) B hu
(1) IEHl (w1)e +§H1 (w2)e!™ +7H2 (wl,_w1)+7H2 (w2, —w2)
BZ

A? . )
T Héy-yy) (602 , wz)eﬂwzt

+ TI{Ey:xx)(wl,a)l)eijlr +

AB (r:xy) () —w;) A (y:xxx) ot
—1—71‘12' (01, —y)e/ 1?2 +§H3' (01, 01, w1)e””

AzB H(} Yy)((l)] , wz)e/(erwz)
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3A (y:xxx) [0} t B3 (yyy) 3wyt
+ HY™ (o1, 01, —wp)e™! + — H37 (w0, w2, 02)e”
3B} 34’B
g HY P 0, 0, —00)e + == Y™ 01, — 01, 09)¢
34A°B  (px . 34’B
S H‘S’Y-Xy\y)(wlj 1, w2)e/(2w1+w2)t H(V ’ny)(wl, w1, 602)6](2(01 )t
3AB%  (oovn . 3AB% )y
+ i Hgy"‘m(wr,wz, _wz)e/wlt < H(} yy)(wlywz,wz)e](2wz+w|)t
3AB? ;
+— H(y SI(— oy, w, )P~ 4 complex conjugate terms
+higher-order terms. (28b)

After substitution of the response expressions (28a) and (28b) in the governing equations of
motion (24a) and (24b), the linear parameter matrices can be shown to be related to first-order
kernel transforms as

H{"™(w) H f”)(w)] ) (29)

[~ [M] + jolC] + [K]] = [H?w © H0

5.2. Synthesis of second-order kernel transforms

It can be seen from the response series (Eq. (28)) that there are three types of second-order
kernel transforms for each degree of freedom, H Ny, m), H “(wy, w,), and H(’ ”)(a)l,coz)
j = x,y. While H(’ (@, ) and H(’ (w1, wy) are the direct kernel transforms, H & (w1, my) is
the cross-kernel transform Equatrng coefficients of the corresponding second- order harmonic in
governing equations of motion (24a) and (24b), after substitution of response expressions
(Egs. (28a) and (28b)), the second-order kernel transforms can be obtained in terms of first-order
kernel transforms in the following form:

{p’h’?z }» MMy =X, ¥ (30)

{ng:m}h)(a)l,a)z)} B [H%x:x)(wl + (1)2) H{x:y)(a)l + (UZ)

Héy:m%)(wla%) HY (w1 + o) H?):y)(wl +w2) | | 9nin
with
Pons = — KSOHT () H™ () — k52 H™ () H{™ (2)
k(X})
2x {H(Y ’71)((0 )H(y ’12)(Cu ) + H(Y ﬂz)(w )HU’ ’71)(w )} (31&)
and

Gy = — K5 HY M () H2 (@0) — K8 HP™ (01 HY™ (007)
(xy)
_ zTy{ng:m)(wl)Hiy:nz)((UZ) + H§Xi’12)(wl)H1(V:’71)(w2)} . (3 1b)
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Eq. (30) can be re-written to express second-order kernel transforms as a function of the non-
linear parameter vector, {{K>,} {sz}}T, as

HY " or,00) | [H ™ 01+ 0) H o+ o) ] [(6H 10} ] [ (K} )
H;)”?l'lz)(wlj 0)2) Hiy:X)((U] + 0)2) Hl(y:y)((,()l —+ (,02) {0} {G} {sz}
where {0} is a null row vector of dimension 1 x 3 and
{G} — { G%"Il'h) Ggﬁ’h) Gg’h’lz) } (33)

with

G(’?l’lz) H(‘f ’Il)(w )H(" ’Iz)(wz)
Ggﬁ’?z) — _Hiyﬂ])(a)l)H?’ﬁz)(wz)
Ggﬂlﬂz) — _0‘5{HYC:’?l)(wl)Hl(}’:'Yz)(wz) 4 H{X"?z)(wl)]_[{yiﬂl)(wz)}‘
Eqgs. (32) relate the general second-order kernel transforms Hé”“'”) (w1, w») and Héy (031, ) 10

the second-order non-linear parameter vector {K>} through a coefficient matrix whose elements
are functions of the first-order kernel transforms alone.

5.3. Synthesis of third-order kernel transforms

There are four types of third-order kernel transforms for each degree of freedom:
H{™ 1, 02, 03), HY (01,00, 03), HY™ (01,05, 03) and H{™ (01, 05,03); j = x,y (refer
Eqs (28a) and (28b)). While the first two are direct kernel transforms the other two are cross-
kernel transforms. Following the harmonic probing procedure, third-order kernel transforms can

{ ngzwzm)(wl,wz,wﬁ } B [Hixzx)(wl + Wy + w3) fo:y)(wl + Wy + w3)

be synthesised as
p'h'?z’?s
(ymynan3) (r:x) )
H; (01, w7, ®3) H; (01 + w4+ w3) H (w1 + wy + w3) qninans
n=xy i=1273 (34)

where

_ 2k§?) H(x”?i) _H(X:njr]k) )
Prynany = — 3 Z 1 (wl) 2 (wj, COk)
k=123

i#j#k
2k(yy) - )
=55 Y. B )" 0 o)
ijk=12,3

i#j#k
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k(x)’) . Ny
B 23—¥ Z Z Hfm'm)(wi)Hén ”f”k)(a)j,wk)
mn=x.y jjk=12,3
MFEN - igjtk

_ kg);)CX)ng:m)(601)H%XZWZ)(wz)H§XZn3)(a)3)
_ ng;J’J’)Hl(}’:ﬂl)(wl)HI(V3W2)(COZ)H1(V3’73)(G)3)

_ k(;;xﬁ Z H}X3’Ii)(wi)H§"“’7.f)(wj)Hl(Vi'lk)(wk)

ij,k=1.23
i#j#k
X. xXn; 0”7) :
_ kg;yy) Z H%Yﬂ)(wl’)Hl j ((Uj)Hl(y ﬂk)(wk)
ijk=123
i#j#k
and
2k, (e e
My X
nymns = — 3y Z Hlxn (i) Hy ™ (), @)
ijk=123
i#j#k
2ky,” 0D, )
M &)
- == > H"(w)H, " (), o)
ijk=123
i#j#k
k(yx)

2y (m:m;) (n:mmy)

= g E H, (w)H, 7™ (w;, wy)
MA=Xy ij,k=123

m#ER ik

_ kg))c)xx)ng”?l)(wl)ng”’lz)(wz)Hix”h)(w})
: : 2:r
_ k(s)}’)J’J’)Hl(Vﬂl)(wl)Hi)”Iz)(wz)H{y 73)(6&)3)

XXy X, (xm; e
— ST HT opHy " (o) HY (o)

ijh=1,23
i#j#k
y X () :
_ k(;;}}) Z Hi\ n )(wi)Hl j (Cl)])HIO) nk)((i)k).
ijk=123
i#j#k

467

(35a)

(35b)

Relationship between third-order kernel transforms and non-linear parameters can be developed

by denoting
(T} = {Tfmnzm) Té’?]ﬂz’h) Tgnmm)}

(36)
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with

2 n; (i)
Tt — -3 > HE ) Hy "™ (e, o)
k=1
i#j#k
() ;i)
Z Hy () Hy ™ (w, @)

ij k=1
i#j

1 n ”
Tgﬂﬂ?z’?s) —_ _§ Z Z Him‘"’)(COi)Hén ’Iﬂlk)(wj’ COk)

UNES N
m#n i#j

Té’?l'b’h) — _%

3

and
(S} = {ngh'?z'h) ngzns) ngnznz) Sgnlnzfls)} (37)
with

ngnzns) — —H}x:"‘)(a)l)HfX:"Z)(a)z)Himb)(a)g,)
Sgﬁnzﬂ}) — _Hl(}"ll)(a)l)H1(V3'12)(w2)H1(V3’73)(w3)

S(3'1|'12’13) _ _ Z Hix-'ﬁ)(wl)Hix-ﬂz)(wz)H})“h)(w:;)
k=123
i#j#k
Sgﬁ’h’?}) — Z fo-’h)(w])Hl(y-ﬂz)(wz)H?ﬂ})(wg))
k=123
i#j#k

to modify Eq. (34) as

HY"M (001, w0y, 3) HYwy + on + 03)  H (o) + 03 + w3)

HY"™ (w1, 0, 05) HY™ o1+ 02+ w3) H (01 + o2 + 03)

Ty 0

K2x
0 {T} K2y
0 {S}]] Ky

B HYIX)(CU] + wy + w3) fozy)((u] + Wy + w3)
Hf“"x)(col + wy + w3) Hiy:y)(wl + Wy + m3)

6. Parameter estimation

A parameter estimation procedure employing the relationships given by Egs. (32) and (38) is
suggested here for the determination of the non-linear parameters. First- and higher-order kernel
transforms are obtained from measurements of response harmonics. Non-linear parameters are
estimated by regression of these transforms through relationships (32) and (38). The kernel
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transforms are determined in an iterative manner, to include maximum possible converging terms
from the Volterra series, to recursively refine the non-linear estimates.

The Volterra series expression for general response harmonic amplitude given in Eq. (23) can be
rewritten for x and y-coordinates as

o0
X(miw + mywy) = Zxo’i(mlwl + myw,) (39)
i—1
and
o0
Y(miwi + mywy) = Zyo'i(mla)l + mow») (40)
i=1
with
1
xO’i(mlwl + mzwz) = W Z AMI+2mez+2Sle+p,p,mz+s,s
pts=i—1
(X:X(2ptm)) Y 2s54my) 1 PP S,S
H, 5" (@) (41)
and

1
_ mi+2p pma+2s
yai(m1w1+m2w2)—72n+2i73 E AT BRTEC,, b mrtss
ps=i—1

(y:x(2p+ml )y(2S+mz))ml +p.p,mr+s,s
X H, 7 () (42)

where n = |my| + |ma|.
6.1. Preliminary estimates of linear parameters
For two input single-tone excitation f,(f) = 4 cos wt and f,(f) = B cos w,t, response harmonic

amplitudes X(w1), X(w;), Y(w;) and Y(w;) can be filtered from measurements x(z), y(z).
Truncating the infinite series expressions in Egs. (39) and (40) up to k-terms, one obtains

k
H{™ (o) z% [X(wl) - Z-*of«ol)] (43a)
i=2
) L . _
1 (a)z)zE X(w2) — Z ai(w2) (43b)
L i=2 1
(r:x) 1 - : ]
H™ (o) ~— | Y(o) =) i) (43c)
L i=2 |
O 1 ~
) mp| Vi) = Y Vo). (43d)
i=2
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A (prehmrnary estimation of the first-order kernel transforms H, (1), H, D (,), H, U (g)), and

Y )(wz) is made by ignoring the contribution from higher- order series terms Srmrlarly, applyrng
excrtatron fu(t) = Acoswyt and f,(t) = Beosw;t, kernel transformsH(x ), H(W (1),
H(y Yw,y) and H U7 (@y) can be obtained. Using these values of first- order kernel transforms
for a set of excrtatron frequencies w;, preliminary estimates of the linear parameter matrices [M],
[C] and [K] are obtained through curve fitting of Eq. (29).

6.2. Preliminary estimates of second-order non-linear parameters

Eq. (32) provides the synthesis relationship of second-order kernel transforms in terms of the
non-linear parameter vector {K,}. The relationship is generic for any combination of #, = x, y;
1, = X, y. Noting that the vector {K,} consists of six unknown parameters, the relationship can be
employed for estimation of these parameters if values of six second-order kernel transforms are
available. This can be obtained through measurement of second-order response harmonic
amplitudes X (2w;), XQw3), X(w1 + w3), Y(2w;), and Y(2w,) and Y(w; + w;). Truncating the
infinite series expressions in Egs. (39) and (40) up to k terms, the corresponding second-order
kernel transforms can be written in the form

XXX 2’ k X
HY" ™ on, 00~ 5 | XQon) = Y oi(20) (44a)
i=2
2 k ]
HY (0, 00) 2 =5 [X (2wy) — ZXU i(2wn) (44b)
i=2 i
Y01, 0n)% | Y(2on) — Z}a(zwl) (440)
2
HY™ o, 0n) 55 | Y (2) — Zya (2w2>] (44d)
N [ k
HY™ (1, 00)% 2 X1+ 02) = Y~ o) + o) (44e)
L i=2
1 i k
HY y)(wl,w2)~AB Y(w1 + w2) — ;yai(wl + wy)|. (44f)

In the above, second-order response harmonic amplitudes X (2w), X (2w;), X (w1 + w3), Y(2w)),
Y(2w,) and Y(w; + wy) are filtered from the measured response. Preliminary estimates of the
second-order kernel transforms are obtained after neglecting the contributions from the higher-
order terms. These kernel transforms can be related to the set of six non-linear parameters,
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using Eq. (32), as
H{ (o, 01) (K3

Héy:)CX)(wl - 01) [P(Yx)] [Q(xx)] kgcy)
Xy ’ ’ )
HY (@3, 02) k52

= (vy) ()
HY»Y) [P0 107 ) (45)
2 (0, ) [POY] [QW)] 2y
H§X:xy)(a)1 ,7) k(2yyy)
Héy:xy)(wl,(j)z) | kg;y) )
where
[P(nlnz)] _ H%x:x)(ma)l + na)z) H;X:y)(mwl + na)z) G(l’ﬁ’h) Ggﬁ’?z) Ggﬂlflz) (46a)
Hl(y:x)(mwl + nw,) H?:y)(mwl + nw») 0 0 0
and
(ox:x) (x:y)
[QM"2)] = Hy™(maoy + nan)  Hy=(moy + now,) 0 0 0 (46b)
1Y man 4 nn) Hnan +nan) | [ G G G

with notations G\, GI""™) G{"" as explained in Eq. (33). The combination tone ma; + nw,
represents the second-order harmonics selected for response amplitude measurement.

Regression of Eq. (45) with the set of measured second-order kernel transforms gives the
preliminary estimates of the six non-linear parameters in the vector {K>}. The measurements of
second-order kernel transforms can also be obtained for a number of frequency sets (w;, @);, and
the resultant overdetermined system of equations can be solved by taking generalised inverse of
the coefficient matrix formed from Eq. (45).

6.3. Preliminary estimates of third-order non-linear parameters

The third-order non-linear parameter vector, {K3}, has in general eight unknown parameters
and can be estimated through measurement of eight response harmonic amplitudes X (3w;),
XBwn), YBw), YBw), XQwi+ @), XQwy+ w), YQ2w; + wy) and Y (2w, + w;). For
measurement of the corresponding third-order kernel transforms, the following k-term
truncations of series expressions in Egs. (39) and (40) are employed:

X:IXXX 4 k X
HY )(wl,wl,wl)zZ[XGwl)—Z' a,-(3w1)] (47a)
=2
. 4 k
HY™ 0, 0, 00) > 55 [X(3602) - Zﬂn(swz)] (47b)
i=2
(roxxy) 4 -
XXX ~ _ X .
HY™ o1, 01,00) x| X Qo1 + o) ; 02w + ) (47¢)
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HE w1, wr, 7)) ~
3 (00, m)F s

. 4
Hgy'xxx)(wl,wl,wl)zﬁ

XQ2wy + wy) — foft(zwz + 1)

k

i=2

k
Y(Bw) — Zyai(3wl)]
P

. 4 -,
H}(y.yyy)(wz, 3, ) zﬁ [Y(3co2) — ZJ ai(3w2)]
i=2

. 4
H?””(wl, Wi, wz)zm

=) ~
3 (wln(DZJ(DZ) 3ABZ

k
YQw1 + ) = Y Yo,2m1 + )
i=2

k
YQws + wy) — Zyai(zwz +w)|.

=2
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(47d)

(47¢)

(47f)

(47g)

(47h)

Third-order response harmonic amplitudes X(3w;), X(3w;), Y(3w;), Y(Bwy), XQw; + wy),
XQwy + w1),Yw; + ;) and Y (2w, + ) are filtered from the measured response. Neglecting
contributions from the higher-order terms, preliminary estimates of the third-order kernel
transforms are obtained. These kernel transforms can be related to the set of eight non-linear

parameters, using Eq. (38), as
Héx:xxn(wl,wl,wl) )
Hé}“m)(wl,wl,wl)
HY 0, 03, 07)
H 30 :yyy)(wz, >, 2)
HY ™oy, 01, )
H?:W)(wl , 01, @)

H §”y”(w1 , 02, ®3)

Hg(y:xyy)(wl, ), @?)

where

[P('?l’72'13)] — [

[Q(ﬂl ’12’73)] — [

H%’”)(mwl + nwy)

H(may + no)

H }X:x)(mw | + nwy)
HY™ (moy + nen)

=
[PE¥0] (O] k)
[PO)]  [QU))] kg';y)
[Pe] [ | ) kG [
[ p(xyy)] [Q(xyy)] k%,y)
kg«;y)

H{™ (maoy + ne)

0

H (moy + nan)

Hf’“y)(mcol + nw,) 0

HY(moy + no,)

[0
[U0»)]
[ U(xxy)]
[UC99]

0

0

[V 0]
[V )]
[ V(xxy)]
[V eom)]

T}”l’hn}) Té’h’hﬂ}) T;mﬂzﬂ_s)

0

(11112113) (11112113) (11112113)
T1123 T2123 T3123

¢ kg,;xx)
k(;Yyy)
e
k(g;yy)
kg);xx)
kgyy‘yy)

(xxy)
k3,

(xyy)
k3 »

|

(48)

(492)

] (49b)
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and
(x:x) (x:) 2
] [Hlv Ymwy + nen)  H(moy + nwz)] [55111'12'13) ng'iz'?s) ngn_ns) S‘(‘nl’hﬂ})]
0 0 0 0

(49¢)

H}J’:x)(mwl + nw») ny:y)(mwl + nw»)

(x:x) ()
[V — [H1 (mwy + nwy)  H 7 (mwy + nw)

0 0 0 0
S(l’ﬁ’lz’h) Sg’ll'?z'?}) Sg’ilﬂzﬂs) S‘(t’h'?z'h) ’
(49d)

Notations 7" and S""">") are as explained in Eqgs. (36) and (37). The combination tone ma; +
nw, represents the eight third-order harmonics selected for response amplitude measurement.

Regression of Eq. (48) with the set of measured third-order kernel transforms gives the
preliminary estimates of the eight non-linear parameters in the vector {K3}. The measurements of
third-order kernel transforms can be obtained for a number of frequency sets (w;, w,);, and the
resultant overdetermined system of equations can be solved as discussed before.

ny:x)(mwl + nwy) H}”)(man + nw,)

6.4. Iterative refinement

The preliminary estimates of the non-linear parameter vectors {K,} and {K3} are now
employed to compute the previously ignored higher-order terms, “o;(m;w; + myw,), Yo,(myw +
my;), in Egs. (43), (44) and (47), to get refined estimates of first-, second- and third-order kernel
transforms, respectively. The fresh estimates of the kernel transforms are used to regress the
values of the second- and third-order non-linear parameters from Eqs. (45) and (48), respectively.
The iterative process is continued to obtain converged values of these parameters. The number &
of the higher-order terms to be included in the refinement would be dependent on the convergence
limit for the applied excitation amplitudes and frequencies. The convergence limit can be applied
through ratio test, while computing the successive higher-order terms. For accurate and
convergent parameter estimation, the following issues need to be addressed:

(i) selection of appropriate excitation levels, 4; and B;, for error minimisation in the first
response harmonic measurement;
(i) selection of limiting number of terms, k, in the finite series approximation;
(iii) selection of appropriate excitation frequency and amplitude for good measurability of higher
response harmonics.

7. Convergence and error

Consider a simplified two-degree-of-freedom model with cubic non-linearity alone. The
equations of motion 24(a) and 24(b) then reduce to

M 3(1) + o X(0) + koeX(2) 4 k(1) + KSS0X3 (1) + K2V (1) = f(0) (50a)

My (1) + i (1) + k(1) + Ky (1) + K5O (0) + K93 (8) = £,(0). (50b)
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Fig. 1. Variation of series approximation error in response harmonics X (w) and Y(w)[/li\; = Aivv = 0.005]: (a) error in
X () and (b) error in Y(w).

Such a system can typically represent a rigid rotor supported in flexible bearings [15]. Here,
kyx, ky, are the direct linear stiffness coefficients and k., k. are the linear cross-cou]aling stiffness
coefficients. k-, k%yy ) are the direct non-linear stiffness coefficients, while kg);xx), K9 represent
the non-linear cross-coupling terms. A detailed convergence analysis has been carried out by the
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(a) variation in excitation level; (b) error in X(w); and (c) error in Y(w).
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Fig. 3. Third-harmonic amplitude, X(w; + ws+ w3), and the error in single-term series approximation
[w3 = 0.1 X \/kyc/m ]: (a) third harmonic X(w; + @z + w3); (b) single-term series approximation; and (c) error of
approximation.

authors in an earlier work [10] in terms of the non-dimensional parameters defined as

t=Vkw/mt, N =x/Xe, 00 =2/Xes  Xo = frnax/kxx fil®) = [(0) frnaxs  i= X,

Q—icﬁ L——kij i=x,yand j=x,y, pu=m,/m
i — 9 Yij 5 — Ay — Ay ) — y X
2\/ kxxm,c ’ kxx
(xxx) £2 yy) £2 Ovy) 2 (XxX) 2
N ka max N k3y fmax IN k3x max N k3)’ max
Xx 3 0 M T 3 0 My T G 3
kxx kxx kxx kxx

The error of finite term response series approximation is defined as
“ex(nr) = [*Z(nr) — Z(nr)]/*Z(nr)|

where “Z(nr) is the nth-order response harmonic amplitude in non-dimensional form and can be
represented as

. “M\" . L
“Z(nr) =2 Z <§> A2 ]I TN ), k=xory (51)
i=1
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Fig. 4. Third-harmonic amplitude, Y(w;+ ws + w3), and the error in single-term series approximation

[w3 = 0.1 X \/kyc/m.]: (a) third harmonic amplitude; (b) single-term series approximation; and (c) error of
approximation.

and ;Z(nr) is the k-term approximation of the response series given by

k
$Z(nr) = "odnr) (52)
i=1
where
, I i
“i(nr) = 2<§> ARG CH T (). (53)

A numerical simulation on convergence and error characteristics has been carried out with
L _ 4L L L
u=10, A = Ayy = 1.0, )uxy = /lyx =0.5, ¢ =g, =00L

Figs. 1(a) and (b) show the variation of approximation errors *e;(r) and ”e,(r) under constant
excitation amplitudes for various number of series terms over the frequency range. It can be
seen from these figures that approximation errors are very high near the natural frequencies
(r = w/\/kyy/my, =0.71 and 1.224) and at their subharmonics. It has also been observed [10]
that the critical values of the non-dimensional non-linear parameters Z)g;)t for k=xory
are small at the system natural frequencies and their subharmonics. The excitation
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Fig. 5. Measurability of third response harmonics over the frequency range, with excitation level corresponding to
IN

Aoy = Xﬁ, = 0.005: (a) response harmonic X(w) and (b) response harmonic Y (3w).

levels should therefore be kept low near natural frequencies of the system. It is desirable to have a
uniform error throughout the frequency range of interest. However, in system identification
problems, it is not possible to predetermine the excitation levels for wuniform
error, in the absence of a priori information about the unknown parameters. Alternately,
excitation level can be selected by constant response amplitude criterion. Fig. 2(a) shows a
variation in the excitation force, in terms of non-dimensional non-linear parameter, iﬁ.,
controlled for constant harmonic amplitude, X(w). Approximation errors in the response
harmonics, X(w) and Y(w), are plotted in Figs. 2(b) and (c), respectively. Errors are relatively
high near the natural frequencies, but they are much less compared to constant excitation level
case (Fig. 1(a)).
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8. Measurability of higher harmonics

Estimation of non-linear parameters is done through the measurement of higher-order
harmonic amplitudes. However, these harmonic amplitudes are generally small in comparison to
the fundamental harmonic amplitude for weakly non-linear systems and may be of the same order
of noise or background vibration signal level. It is therefore important to design the experiment
suitably to make the higher harmonics of significant amplitude so as to be distinctly measurable in
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the response spectrum. Non-dimensional response amplitude of general third-order harmonics
X(w; + wy + w3) and Y(w; + wy + w3) is plotted in Figs. 3 and 4, respectively, for w; and w;
varying over a wide range with w3 being kept constant at 0.1,/k,./m,. These plots have been
obtained through numerical simulation using fourth-order Runge-Kutta algorithm, with three-
tone excitation of the non-linear system given by Egs. (50a) and (50b). This numerical solution
can be termed as exact response. Figs. 3(a) and 4(a) show that the third-harmonic amplitudes are
significant or measurable only along the frequency combinations w; + @, + w3 = w,, and w; +
w7y + w3 = wy,. It may be noted here that in this case, for /lLy = /IL = 0.5, w,, = 0.71\/kyy/my
and w,, = 1.224,/k,,/m. Figs. 3(b) and 4(b) show the Volterra serles single-term approximation
of the third-harmonic amplitude series for respective cases. Errors between these approximations
and the exact solutions of Figs. 3(a) and 4(a) are plotted in Figs. 3(c) and 4(c). The error is seen to
be relatively low along the frequency combination w; + ws + w3 = w,, Or W,,.

These observations indicate that the third-order response harmonics should be measured along
the frequency combination line w; + ws + w3 = w,, or w,,. For comparison of relative signal
strength of higher harmonics with respect to the fundamental harmonic, a measurability index,
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Fig. 8. Response spectrum of x-response (Case: 1, 5% measurability): (a) @ = 0.21\/ky/my; (b) @ = 0.221/ky./my;

(c) @ = 0.25\/kyx/my; and (d) o = 0.261/kyy/m.

MI(nw), is defined as

MI(nw) = X (nw)/X(w).

Figs. 5(a) and (b) show the variation in measurability index over the frequency range for third
harmonics X(3w) and Y (3w), respectively. Measurability is seen to be maximum at w, /3 =
0.237+/kyx/m, and this maximum value is termed as peak measurability. These observations
suggest that the third harmonic should be measured around a set of frequencies very close to one-

third of first natural frequency of the system.

9. Numerical illustration

Parameter estimation is illustrated for the following values of linear and non-linear parameters

in Egs. (50a) and (50b)
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Fig. 9. Response spectrum of y-response (Case: 1, 5% measurability): (a) o = O.2lm; ®) o= 0.22m;
(©) o = 0.25\/kyx/my; and (d) © = 0.26/ky/ms.
Linear parameters:
m, =m, = 1.0kg
kxx = kyy = 1.0 x 10’ N/m
(o =, =0.01
kyy = kyx = 0.5 x 10" N/m.

Non-linear parameters:

Case 1: kg”‘x) K2 = 1.0 x 10 N/m’.
Case 2: kK™ = 1.0 x 10" N/m’ and kW) 1.0 x 10" N/m’.

Response x(¢) and y(¢) are obtained from integration of equations of motion (50a) and (SOb) by
Runge—Kutta algorithm. For computational ease, the cross-coupled non-linear parameters k
and k &9 are taken as zero. Case 1 represents identical non-linear stiffness coefficients in both the
X- and y-direction, whereas Case 2 represents asymmetrical non-linearity in x- and y-direction.
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Fig. 10. (a) Iterative estimates of non-linear parameters (Case: 1, 5% measurability). (b) Convergence of estimation
error with iterations (Case: 1, 5% measurability).

Single-point excitation—one at a time, first in the x-direction and then in the y-direction—is
employed.

9.1. Case 1

The natural frequencies of the two-degree-freedom system under consideration are found to be
0.7\/kxx/my and 1.224+/k,/m,. Frequency range, from w = 0.1\/ky,/m, to @ = 1.5\/kyy/my, is
selected for excitation to include both the natural frequencies. The amplitude of the harmonic
excitation is varied over the frequency range so as to obtain a nearly constant response amplitude,
throughout the frequency range (a constant amplitude, X(w) = 1.0 x 107" m, is selected in the
present case). The required variation in excitation amplitude is plotted in Fig. 6(a), while the
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Fig. 11. Final estimates of first-order kernel transforms (Case: 1, 5% measurability): (a) kernel transform H(V x)(w)
(b) kernel transform HY"(w); (c) kernel transform H'**(w); and (d) kernel transform HY?(«).

corresponding response levels X(w) and Y(w) are plotted in Figs. 6(b) and (c¢). The preliminary
estimates of the first-order kernel transforms are obtained using Eq) (43). Excitation force is first
applied in the x-direction and kernel transforms H, e Y)(a)) and H (w) are estimated. Excrtatlon
force is then applied in the y-direction, and kernel transforms H, ey )(w) and H v )(w) are
estimated. Figs. 7(a)—(d) show the estimated first-order kernel transforms H, (a2 Y)(a)) H(} ),
H, (), and H, U)(). Standard curve-fitting procedure is applied to these kernels to obtaln the
followmg prelrmlnary estimates of the linear parameters:

Ky = kyy = 1.0042 x 10" N/m, ky, = kyy = 0.4960 x 10’ N/m
my =m, = 0.9549kg, (. ={(, = 0.00883.

For measurement of the third-order harmonics, excitation level is set at 0.4582 N corresponding to
5% peak measurability, and response harmonic amplitudes X (3w) and Y(3w) are measured from
the responses for a set of four excitation frequencies w/+/ky./m, = 0.21, 0.22, 0.25 and 0.26.
These excitation frequencies are selected close to the one-third natural frequency value, w,, /3 =
0.237\/kyx/my. The response spectra of overall responses x(z) and y(f) for these excitation
frequencies are shown in Figs. 8 and 9, respectively. Employing Eq. (47) and using the third-order
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Fig. 12. (a) Iterative estimates of non-linear parameters (Case: 1, 5% measurability). (b) Convergence of estimation
error with iterations (Case: 1, 5% measurability).

harmonic amplitudes, preliminary estimates of the non-linear parameters is obtained as
kS = 9P = 0.8450 x 10" N/m’.

The recursive iteration algorithm, for refinement of the estimates, includes appropriate number of
higher-order series terms in Eqgs. (43) and (47) to give a convergent Volterra series solution.
Iterations are continued till the estimated non-linear parameters converge within a variation range
of 0.1%. Fig. 10(a) shows the convergence of iterative estimates of the non-linear parameter k(x”)
with successive iterations (it is the same for the other non-linear parameter k3 ) ). Correspondmg
error of estimation is plotted in Fig. 10(b). A significant improvement in estlmates is obtained
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Fig. 13. (a) Comparison in estimation of non-linear parameters, between 5% measurability and 10% measurability
cases (Case: 1). (b) Comparison of estimation error between 5% measurability and 10% measurability cases (Case: 1).

through iteration giving error reduction from 15% to 0.29%. Fig. 11 shows the final estimates of
the first-order kernel transforms. The final estimates of linear and non-linear parameters are:

kew = kyy = 0.9998 x 10’ N/m, kyy, = kyy = 0.5088 x 10’ N/m
m, =m, = 09994 kg, (. ={, =0.01005
ke = K97 = 0.9971 x 10" N/m’.
A significant feature of the recursive iteration procedure is the major improvement obtained in the

damping estimates. The preliminary estimate was (., = {,,, = 0.00883, with an error of 11.7%.
The final estimate is (. = (,, = 0.01005, where the error has reduced to 0.05%. This
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Fig. 14. (a) Iterative estimates of non-linear parameters (Case: 2, 10% measurability). (b) Convergence of estimation
error with iterations (Case: 2, 10% measurability).

improvement can be explained by noting that the first-order FRF values are very much sensitive
to damping near the natural frequencies and hence the accuracy of damping estimate is directly
related to that of FRF estimates near natural frequencies. The procedure of excitation level
control, suggested in Section 7, plays a significant role here as it employs lower excitation level
near the natural frequencies, which improves convergence of the response series and enables
correction with more number of higher-order terms in recursive iteration.

Similar exercise is carried out for 10% peak measurability, which is obtained at an excitation
amplitude of 0.693 N. The convergence pattern for the estimates of non-linear parameters and the
corresponding error are shown in Figs. 12(a) and (b). Final estimates of linear and non-linear
parameters are:

kxx = kyy = 1.0010 x 10’ N/m, ky, = ky, = 0.5089 x 10’ N/m
my =my =09996kg, (=0, =001002, K™ =iy =09858 x 10" N/m".

A comparison of the above results with those obtained for the earlier case of 5% measurability
reveals no significant change in the linear estimates. However, the demand for higher
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measurability results in higher error in estimates of non-linear parameters (1.42% in the case of
10% measurability; 0.29% in the case of 5% measurability; Figs. 13(a) and (b).

9.2. Case 2

In this case, non-linear stiffness along the y-direction is taken 0.1 times that along the
x-direction. This represents an asymmetric stiffness model. The simulation is carried out with
the same set of excitation levels as in Case 1, corresponding to 10% peak measurability. The
convergence pattern of non-linear parameter estimates during recursive iteration, along with the
associated error, is shown in Figs. 14(a) and (b). Final estimates of linear and non-linear
parameters are:

my, = 0.9900kg, m, = 1.0254kg

key = 0.9828 x 10" N/m, ky, = 0.4997 x 10’ N/m
kyy, = 1.0277 x 10’ N/m, k,, = 0.4998 x 10’ N/m
(o = 0.00993,  {,, = 0.009927

KSE = 10,9948 x 10" N/m®, k97" = 1.0055 x 10" N/m”.

Final estimation errors are 0.52% and 0.58%, respectively, for the non-linear parameters. It is
found that in this case faster convergence is achieved than in Case 1.

10. Conclusion

Multi-input Volterra series has been employed here for developing a parameter estimation
procedure for multi-degree-of-freedom systems with polynomial form non-linearity. The
procedure is based on recursive iteration and works with the convergence criteria developed by
the authors in an earlier work. Inclusion of higher-order response component terms in harmonic
amplitude improves the estimation accuracy significantly, which is evident from the comparison
between preliminary estimates and final estimates. Appropriate control of excitation level over the
frequency range facilitates accurate estimation of damping, which otherwise is found to be very
difficult in previous procedures. The estimation algorithm, developed here for stiffness non-
linearity, can be easily extended for damping non-linearity as well.
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