Brihaspati_sync: A tool for interactive classroom over multicast network

Yatindra Nath Singh
Electrical Engineering Department
Indian Institute of Technology Kanpur
http://home.iitk.ac.in/~ynsingh
Purpose

- Holding live lecture
- PCs with multimedia support
- Multicast connectivity
- Application architecture?
Unicast network
Unicast network

- Wastage of bandwidth
- Not scalable to large numbers
- More computing resources at server
Multicast
Multicast

- Additional protocols
- No wastage of bandwidth
- Efficient and scalable compared to unicast
- Synchronous tool – based on multicast due to better scalability
- Unicast-multicast gateways, end system multicast
Multicast (contd.)

- For multicast the destination address is a group address.
- All tx to group address (cannot use TCP, have use UDP)
- Receivers takes group membership to receive the media transmission.
knowing the group address?

- Well known group address for announcement.
- Each tx puts the announcement periodically.
- Rx listens to announcements on this well known group address.
- Rx now knows
 - about what all session will be there
 - at what time and
 - at what group address.
Group address?

• How to make sure? – no two transmission uses the same group address.

• (Source address, group address) pair – unique
 – Used for session identification.

• Different media types use different ports. (UDP port)
Knowing group address (contd.)

- How students (their part of software) of class will know – groups address.
- LMS (learning management system) will be used additionally to disseminate lecture notes, slides, discussion group etc asynchronously. (Brihaspati or Brihaspati-2)
- Same database can be used by synchronous tool
Steps for instructor

- Client authentication
- User-group-role (instructor, student)
- Allocation of group addresses
- Control of various media types
- Encryption and decryption for secrecy after authentication
Audio/video capture tool

Diagram showing the flow of audio/video capture tool to instructor client and multicast with TCP-UDP, unicast, and multicast conversion.
Audio/video capture mechanism

- Possibility of classroom scenario
- Separate capture tool
- Capture tool – instructor client – multicast to students.
- Capture tool and student client of same machine.
Problem of layering

- Why?
 - Heterogenous network
 - For only video transmission – connection breaks if congestion occurs in some links.
 - Network usually will have dynamic bandwidth conditions.

- Use QoS support – costly

- Use video transmission in multiple layers.
Video layering

- Video -> L1 + L2 + L3 + L4
- L1 is good enough for poor quality video.
- L1 + L2 gives improved performance
- L1, L2, L3, and L4 on separate multicast group.
- Drop in order L4, L3, L2, and L1 if congestion occurs
- Smooth degradation
Layering in our tool

- All media types are prioritized
- Each one is send in separate layer (separate group address)
- Each session requires more number of multicast groups addresses – routing table resources in routers are consumed.
- Depending on bandwidth estimate, only layers with higher priority are subscribed.
Advantages

- Bandwidth estimation in realtime.
- Join and leave decisions as a result of estimation.
- Different students will get different quality of classroom.
 - Will be able to attend the class always even if small bandwidth is available.
Other client end features

• Handraising
 – Permission for audio/video transfer
 – One or more than one.
• Chat
• Whiteboard
• Screen capture
System architecture
Problem yet to be resolved

- Bandwidth estimator
- Layered audio, video codec in Open Domain (Brihaspati_sync is opensource freeware)
- Unicast-multicast gateways
- Performance enhancements.
- Better security features.
URL regarding this project

- http://brihaspati.sourceforge.net/
- http://sourceforge.net/projects/brihaspati
- brihaspati_iitk group at yahoogroups.com
Future targets

- Brihaspati-2 release for users in August 2005
- Brihapati_sync – basic release for users in August 2005.