Department of Physics
 IIT Kanpur, Semester II, 2017-18

Problem 1.1: The plot of the following function looks like a hill on the $x y$ plane:

$$
h(x, y)=\exp \left[\left(2 x y-3 x^{2}-4 y^{2}-18 x+28 y-5\right) / 60\right] .
$$

(a) Where is the top of the hill located?
(b) How high is the hill?
(c) In what direction is the slope steepest at the point $(1,1)$?
(d) How steep is the slope of $h(x, y)$ at the point $(1,1)$ in the direction $\mathbf{n}=(\hat{x} x+\hat{y} y)$?

Problem 1.2: The separation vector can be written as $\mathbf{R}=\left(x-x^{\prime}\right) \hat{\mathbf{x}}+\left(y-y^{\prime}\right) \hat{\mathbf{y}}+\left(z-z^{\prime}\right) \hat{\mathbf{z}}$. If $R=|\mathbf{R}|$ is the magnitude of the separation vector, show that gradient ∇R is a unit vector parallel to \mathbf{R}.

Problem 1.3: Find the scaler function $\phi(x, y, z)$ whose gradient is $\boldsymbol{\nabla} \phi=\left(2 x y+z^{3}\right) \hat{\mathbf{x}}+x^{2} \hat{\mathbf{y}}+3 x z^{2} \hat{\mathbf{z}}$.
Problem 1.4: Evaluate the gradient of the following scalar functions: (i) $\phi=\ln |\mathbf{r}|$ and (ii) $\phi=1 /|\mathbf{r}|$.

Problem 1.5:

(a) Calculate the divergence $\boldsymbol{\nabla} \cdot \mathbf{E}$ of the vector $\mathbf{E}=\hat{\mathbf{r}} / r^{n}$, where n is an integer and $\hat{\mathbf{r}}$ is the unit vector corresponding to vector $\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$.
(b) What is $\boldsymbol{\nabla} \cdot \mathbf{E}$ when $n=2$?
(c) In what physical context the vector-functions of type $\mathbf{E}=\hat{\mathbf{r}} / r^{2}$ are encountered?

Problem 1.6: Suppose $\boldsymbol{\nabla} \cdot \mathbf{E}=0, \boldsymbol{\nabla} \cdot \mathbf{B}=0, \boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$ and $\boldsymbol{\nabla} \times \mathbf{B}=\frac{\partial \mathbf{E}}{\partial t}$. Show that

$$
\nabla^{2} \mathbf{E}=\frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \quad \text { and } \quad \nabla^{2} \mathbf{B}=\frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

Problem 1.7 (Griffiths Prob 1.33): Verify Stoke's theorem for the function $\mathbf{v}=(x y) \hat{\mathbf{x}}+(2 y z) \hat{\mathbf{y}}+(3 z x) \hat{\mathbf{z}}$, using the shaded area shown in Fig. 1(a).

Problem 1.8 (Griffiths Prob 1.53): Verify divergence theorem for the function $\mathbf{v}=r^{2} \cos \theta \hat{\mathbf{r}}+r^{2} \cos \phi \hat{\theta}-r^{2} \cos \theta \sin \phi \hat{\phi}$, using the one octant of the sphere of radius R as the volume [see Fig. 1(b)].

FIG. 1:

