PHY103A: Physics II

Homework # 1

Problem 1.1: The plot of the following function looks like a hill on the *xy* plane:

 $h(x,y) = \exp[(2xy - 3x^2 - 4y^2 - 18x + 28y - 5)/60].$

- (a) Where is the top of the hill located?
- (b) How high is the hill?
- (c) In what direction is the slope steepest at the point (1,1)?
- (d) How steep is the slope of h(x, y) at the point (1,1) in the direction $\mathbf{n} = (\hat{x}x + \hat{y}y)$?

Problem 1.2: The separation vector can be written as $\mathbf{R} = (x - x')\mathbf{\hat{x}} + (y - y')\mathbf{\hat{y}} + (z - z')\mathbf{\hat{z}}$. If $R = |\mathbf{R}|$ is the magnitude of the separation vector, show that gradient ∇R is a unit vector parallel to \mathbf{R} .

Problem 1.3: Find the scalar function $\phi(x, y, z)$ whose gradient is $\nabla \phi = (2xy + z^3)\hat{\mathbf{x}} + x^2\hat{\mathbf{y}} + 3xz^2\hat{\mathbf{z}}$.

Problem 1.4: Evaluate the gradient of the following scalar functions: (i) $\phi = \ln |\mathbf{r}|$ and (ii) $\phi = 1/|\mathbf{r}|$.

Problem 1.5:

- (a) Calculate the divergence $\nabla \cdot \mathbf{E}$ of the vector $\mathbf{E} = \hat{\mathbf{r}}/r^n$, where *n* is an integer and $\hat{\mathbf{r}}$ is the unit vector corresponding to vector $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$.
- (b) What is $\nabla \cdot \mathbf{E}$ when n = 2?
- (c) In what physical context the vector-functions of type $\mathbf{E} = \hat{\mathbf{r}}/r^2$ are encountered?

Problem 1.6: Suppose $\nabla \cdot \mathbf{E} = 0$, $\nabla \cdot \mathbf{B} = 0$, $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ and $\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t}$. Show that

$$abla^2 \mathbf{E} = rac{\partial^2 \mathbf{E}}{\partial t^2} \qquad \text{and} \qquad
abla^2 \mathbf{B} = rac{\partial^2 \mathbf{B}}{\partial t^2}.$$

Problem 1.7 (Griffiths Prob 1.33): Verify Stoke's theorem for the function $\mathbf{v} = (xy)\mathbf{\hat{x}} + (2yz)\mathbf{\hat{y}} + (3zx)\mathbf{\hat{z}}$, using the shaded area shown in Fig. 1(a).

Problem 1.8 (Griffiths Prob 1.53): Verify divergence theorem for the function $\mathbf{v} = r^2 \cos \theta \hat{\mathbf{r}} + r^2 \cos \theta \hat{\theta} - r^2 \cos \theta \sin \phi \hat{\phi}$, using the one octant of the sphere of radius R as the volume [see Fig. 1(b)].

FIG. 1: