Homework # 2

Problem 2.1: Divergence theorem in cylindrical coordinates (Griffiths 3rd ed. Prob 1.42)

Consider the following vector function $\mathbf{V} = s(2 + \sin^2 \phi)\hat{\mathbf{s}} + s \sin \phi \cos \phi \hat{\phi} + 3z\hat{\mathbf{z}}$

- (a) Find the divergence of **V**.
- (b) Verify the divergence theorem for V, using the quarter cylinder shown in Fig. ??.
- (c) Find the curl of **V**.

FIG. 1:

Problem 2.2: Applications of the Dirac delta function (Griffiths 3rd ed. Prob 1.46)

- (a) What is the electric charge density $\rho(\mathbf{r})$ of a point charge q at $\mathbf{r'}$?
- (b) What is the electric charge density of an electric dipole, that consists of a point charge -q at the origin and a point charge +q at **a**?
- (c) What is the electric charge density of a uniform, infinitesimally thin spherical shell of radius R and total charge Q, centered at the origin?

Problem 2.3: Calculating charge density given an Electric field (Griffiths 3rd ed. Prob 2.42)

What is the charge density corresponding to electric field $\mathbf{E}(\mathbf{r}) = \frac{A}{r} \hat{\mathbf{r}} + \frac{B \sin \theta \cos \phi}{r} \hat{\phi}$, where A and B are constants.

Problem 2.4: Physical Electrostatic field (Griffiths 3rd ed. Prob 2.20)

Which of these two can be a physical electrostatic field?

- (a) $\mathbf{E} = xy\hat{\mathbf{x}} + 2yz\hat{\mathbf{y}} + 3xz\hat{\mathbf{z}}$
- (b) $\mathbf{E} = y^2 \hat{\mathbf{x}} + (2xy + z^2) \hat{\mathbf{y}} + 2yz \hat{\mathbf{z}}$

Problem 2.5: Calculating electric field for a given charge distribution

(a) What is the electric field inside a uniformly charged sphere of charge density $\rho = k$ and radius R [See Fig. ??(a)]? (Griffiths 3rd ed. Prob 2.12)

- (b) The charge density of a spherical shell is $\rho = \frac{k}{r^2}$ in the region $a \le r \le b$ [See Fig. ??(b)]. Find the electric field in the three regions: (i) $r \le a$, (ii) $a \le r \le b$, (iii) $r \ge b$. (Griffiths 3rd ed. Prob 2.15)
- (c) Two spheres, each of radius R and carrying charge densities $+\rho$ and ρ , respectively, are placed so that they partially overlap[Fig. ??(c)]. Call the vector from the positive center to the negative center **d**. Show that the field in the region of overlap is constant, and find its value (Griffiths 3rd ed. Prob 2.18)

Problem 2.6: Scalar and Vector Potentials (Griffiths 3rd ed. Prob 1.52)

Consider the following vector functions:

- (1) $\mathbf{v_1} = x^2 \hat{\mathbf{x}} + 3xz^2 \hat{\mathbf{y}} 2xz \hat{\mathbf{z}}.$
- (2) $\mathbf{v_2} = xy\hat{\mathbf{x}} + 2yz\hat{\mathbf{y}} + 3zx\hat{\mathbf{z}}.$
- (3) $\mathbf{v_3} = y^2 \hat{\mathbf{x}} + (2xy + z^2) \hat{\mathbf{y}} + 2yz \hat{\mathbf{z}}.$
- (a) Which is of following vectors can be expressed as the gradient of a scalar?
- (b) Which is of following vectors can be expressed as the curl of a vector? Find that vector.

Problem 2.7: Electric Potential (Griffiths 3rd ed. Prob 2.44)

An inverted hemispherical bowl of radius R carries a uniform surface charge density σ . Find the potential difference between the "north" pole and the center.

FIG. 3: