Department of Physics
 IIT Kanpur, Semester II, 2017-18

Problem 2.1: Divergence theorem in cylindrical coordinates (Griffiths 3rd ed. Prob 1.42)
Consider the following vector function $\mathbf{V}=s\left(2+\sin ^{2} \phi\right) \hat{\mathbf{s}}+s \sin \phi \cos \phi \hat{\phi}+3 z \hat{\mathbf{z}}$
(a) Find the divergence of \mathbf{V}.
(b) Verify the divergence theorem for \mathbf{V}, using the quarter cylinder shown in Fig. ??.
(c) Find the curl of \mathbf{V}.

FIG. 1:

Problem 2.2: Applications of the Dirac delta function (Griffiths 3rd ed. Prob 1.46)
(a) What is the electric charge density $\rho(\mathbf{r})$ of a point charge q at \mathbf{r}^{\prime} ?
(b) What is the electric charge density of an electric dipole, that consists of a point charge $-q$ at the origin and a point charge $+q$ at \mathbf{a} ?
(c) What is the electric charge density of a uniform, infinitesimally thin spherical shell of radius R and total charge Q, centered at the origin?

Problem 2.3: Calculating charge density given an Electric field (Griffiths 3rd ed. Prob 2.42)
What is the charge density corresponding to electric field $\mathbf{E}(\mathbf{r})=\frac{A}{r} \hat{\mathbf{r}}+\frac{B \sin \theta \cos \phi}{r} \hat{\phi}$, where A and B are constants.

Problem 2.4: Physical Electrostatic field (Griffiths 3rd ed. Prob 2.20)

Which of these two can be a physical electrostatic field?
(a) $\mathbf{E}=x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+3 x z \hat{\mathbf{z}}$
(b) $\mathbf{E}=y^{2} \hat{\mathbf{x}}+\left(2 x y+z^{2}\right) \hat{\mathbf{y}}+2 y z \hat{\mathbf{z}}$

Problem 2.5: Calculating electric field for a given charge distribution
(a) What is the electric field inside a uniformly charged sphere of charge density $\rho=k$ and radius R [See Fig. ??(a)]? (Griffiths 3rd ed. Prob 2.12)
(b) The charge density of a spherical shell is $\rho=\frac{k}{r^{2}}$ in the region $a \leq r \leq b$ [See Fig. ??(b)]. Find the electric field in the three regions: (i) $r \leq a$, (ii) $a \leq r \leq b$, (iii) $r \geq b$. (Griffiths 3rd ed. Prob 2.15)
(c) Two spheres, each of radius R and carrying charge densities $+\rho$ and ρ, respectively, are placed so that they partially overlap[Fig. ??(c)]. Call the vector from the positive center to the negative center \mathbf{d}. Show that the field in the region of overlap is constant, and find its value (Griffiths 3rd ed. Prob 2.18)
(a)

(b)

(c)

FIG. 2:

Problem 2.6: Scalar and Vector Potentials (Griffiths 3rd ed. Prob 1.52)
Consider the following vector functions:
(1) $\mathbf{v}_{\mathbf{1}}=x^{2} \hat{\mathbf{x}}+3 x z^{2} \hat{\mathbf{y}}-2 x z \hat{\mathbf{z}}$.
(2) $\mathbf{v}_{\mathbf{2}}=x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+3 z x \hat{\mathbf{z}}$.
(3) $\mathbf{v}_{\mathbf{3}}=y^{2} \hat{\mathbf{x}}+\left(2 x y+z^{2}\right) \hat{\mathbf{y}}+2 y z \hat{\mathbf{z}}$.
(a) Which is of following vectors can be expressed as the gradient of a scalar?
(b) Which is of following vectors can be expressed as the curl of a vector? Find that vector.

Problem 2.7: Electric Potential (Griffiths 3rd ed. Prob 2.44)
An inverted hemispherical bowl of radius R carries a uniform surface charge density σ. Find the potential difference between the "north" pole and the center.

FIG. 3:

