## Department of Physics <br> IIT Kanpur, Semester II, 2017-18

Problem 3.1: Finding potential, given a charge distribution (Griffiths 3rd ed. Prob 2.26)
A conical surface carries a uniform surface charge $\sigma$. The height of the cone is $h$, and the radius of the top is also $h$ (see Fig. 1). Find the potential difference between points and $\mathbf{b}$.


FIG. 1:

Problem 3.2: Finding field and charge density, given an electric potential, (Griffiths 3rd ed. Prob 2.46)
The electric potential of some configuration is given by the expression $V(\mathbf{r})=A \frac{e^{-\lambda r}}{r}$, where $A$ and $\lambda$ are constants.
(a) Find the electric field $\mathbf{E}(\mathbf{r})$.
(b) What is the charge density $\rho(r)$ ?
(c) What is the total charge $Q$ ?

Problem 3.3: Verifying Poisson's Equation (Griffiths 3rd ed. Prob 2.29)
The potential $V(\mathbf{r})$ at $\mathbf{r}$ due to a localized charge distribution is given as

$$
V(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{z} d \tau^{\prime}
$$

where $\rho\left(\mathbf{r}^{\prime}\right)$ is the charge density at $\mathbf{r}^{\prime}$ and $\approx$ is the separation between $\mathbf{r}$ and $\mathbf{r}^{\prime}$. Verify that the above equation satisfies Poisson's equation.

Problem 3.4: Electrostatic energy of two spherical shells (Griffiths 3rd ed. Prob 2.34)
Consider two concentric spherical shells, of radii $a$ and $b$. Suppose the inner one carries a charge $q$, and the outer one a charge $-q$ (both of them uniformly distributed over the surface).
(a) Calculate the energy of this configuration.
(b) How much of this is the interaction energy between the two shells?

## Problem 3.5: Electrostatic Force

(a) A metal sphere of radius $R$ carries a total charge $Q$. What is the force of repulsion between the northern and the southern hemispheres (see Fig. 2)? (Griffiths 3rd ed. Prob 2.38)
(b) A uniformly charged sphere of radius $R$ carries a total charge $Q$. What is the force of repulsion between the northern and the southern hemispheres (see Fig. 2)? (Griffiths 3rd ed. Prob 2.43)


FIG. 2:

Problem 3.6: Capacitance of coaxial metal cylinders (Griffiths 3rd ed. Prob 2.39)
Find the capacitance per unit length of two coaxial metal cylindrical cylinders, of radii $a$ and $b$ (see Fig. 3).


FIG. 3:

