Department of Physics
 IIT Kanpur, Semester II, 2017-18

Problem 4.1: Force with image charges (Griffiths 3rd ed. Prob 3.6)

Find the force on charge $+q$ in Fig. 1(a), in which the $x y$ plane is an infinite grounded conductor.

Problem 4.2: Infinite-line image charge (Griffiths 3rd ed. Prob 3.9)

An infinite line charge runs parallel to the x-axis at a distance d from the $x-y$ plane, which is an infinite grounded conductor [see Fig. 1(b)].
(a) What is the potential in the region above the plane.
(b) Find the charge density σ induced on the conducting plane.

FIG. 1:

Problem 4.3: Far-field potential (Griffiths 3rd ed. Prob 3.26)
A sphere of radius R, centered at the origin, carries charge density $\rho(r, \theta)=k \frac{R}{r^{2}}(R-2 r) \sin \theta$, where k is a constant, and r, θ are the usual spherical coordinates [see Fig. 2]. Find the approximate potential for points $\mathbf{r}_{\mathbf{0}}$ on the z axis, far from the sphere.

FIG. 2:

Problem 4.4: Potential due to a four-charge system (Griffiths 3rd ed. Prob 3.27)
For the charge distribution shown in Fig. 3, find the approximate potential at points far from the origin.

FIG. 3:

Problem 4.5: Far-field Potential due to a spherical-charge distribution (Griffiths 3rd ed. Prob 3.28)
Let's consider a spherical shell of radius R having a surface charge density $\sigma=k \cos \theta$.
(a) Calculate the dipole moment of this charge distribution.
(b) Find the approximate potential at points far from the sphere $(r \gg R)$

Problem 4.6: Electric field of a pure dipole (Griffiths 3rd ed. Prob 3.33)
Show that the electric field of a pure dipole field can be written in the coordinate-free from as

$$
\mathbf{E}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3(\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{p}]
$$

Problem 4.7: Field and potential due to a three-charge system (Griffiths 3rd ed. Prob 3.32)
Calculate the potential, up to two lowest orders in the multipole expansion, at a far-away point due to the threecharge system shown in Fig. 4. Use the potential to calculate the electric field.

FIG. 4:

