Department of Physics
 IIT Kanpur, Semester II, 2017-18

Problem 5.1: Force and Torque on a dipole (Griffiths 3rd ed., Prob 4.5 \& Prob. 4.9)
(a) In Fig. 1(a), $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$ are two perfect dipoles separated by a distance r. What is the torque on $\mathbf{p}_{\mathbf{1}}$ due to $\mathbf{p}_{\mathbf{2}}$.
(b) In Fig. 1(b), A dipole \mathbf{p} is at a distance r from a point charge q, and oriented so that \mathbf{p} makes an angle θ with the vector \mathbf{r} from q to \mathbf{p}. What is the force on \mathbf{p} ?

FIG. 1:

Problem 5.2: Finding electric field in the presence of dielectric (Griffiths 3rd ed., Prob 4.15)
A spherical shell with inner radius a and outer radius b is made of dielectric material with polarization $\mathbf{P}=\frac{k}{r} \hat{\mathbf{r}}$, where k is a constant r is the distance from the center (see Fig. 2). Assume no free charge anywhere.
(a) Calculate all the bound charges.
(b) Use Gauss's law for electric fields to calculate the electric field in all the three regions.
(c) Use Gauss's law for electric displacement to calculate the electric field in all the three regions.

FIG. 2:

Problem 5.3: Electric potential in a dielectric material (Griffiths 3rd ed., Prob 4.20)
A sphere of linear dielectric material has embedded in it a uniform free charge density ρ. Find the potential at the center of the sphere (relative to infinity), if its radius is R and its dielectric constant is ϵ_{r}

Problem 5.4: Capacitor with dielectric filling (Griffiths 3rd ed., Prob 4.21)
A certain coaxial cable consists of a copper wire, radius a, surrounded by a concentric copper tube of inner radius c. The space between is partially filled (from b out to c) with material of dielectric constant ϵ_{r} (see Fig. 3). Find the capacitance per unit length of the cable.

FIG. 3:

Problem 5.5: Force on a dielectric material (Griffiths 3rd ed., Prob 4.28)
Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand vertically in a tank of dielectric oil (susceptibility χ_{e}, mass density ρ). The inner one is maintained at potential V and the outer one is grounded (see Fig. 4). To what height (h) does the oil rise in the space between the tubes.

FIG. 4:

Problem 5.6: bound charges in a cubical dielectric (Griffiths 3rd ed., Prob 4.31)
A dielectric cube of side a, centered at the origin, carries a polarization $\mathbf{P}=k \mathbf{r}$. Find all the bound charges, and check that they add up to zero.

