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Notes 
 

• No Class on Friday; No office hour. 
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• HW # 4 has been posted 
  
• Solutions to HW # 5 have been posted 
 



Summary of Lecture # 10: 

The potential in the region above the 
infinite grounded conducting plane? 

V 𝐫𝐫 =
𝑞𝑞

4𝜋𝜋𝜖𝜖0
1

x2 + y2 + (z − d)2
−

1
x2 + y2 + (z + d)2

 

The potential outside the grounded 
conducting sphere? 

V 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r +

𝑞𝑞′
r′ 

 

𝑏𝑏 =
𝑅𝑅2

𝑎𝑎  𝑞𝑞′ = −𝑅𝑅
𝑎𝑎
𝑞𝑞  
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Question: 

4 

The potential in the region above the 
infinite grounded conducting plane? 

V 𝐫𝐫 =
𝑞𝑞

4𝜋𝜋𝜖𝜖0
1

x2 + y2 + (z − d)2
−

1
x2 + y2 + (z + d)2

 

Q: Is kV 𝐫𝐫  also a solution, where k is a constant? 

Ans: No 

Corollary to First Uniqueness Theorem: The potential in a volume 
is uniquely determined if (a) the charge desity throughout the 
region and (b) the value of V at all boundaries, are specified.  

𝛁𝛁2V1 = −
𝜌𝜌
𝜖𝜖0

 In this case one has to satisfy the Poisson’s 
equation. But kV 𝐫𝐫  does not satisfy it.  

Only when 𝜌𝜌 = 0 (everywhere), kV 𝐫𝐫  can be a solution as well Exception: 
But then since in this case V 𝐫𝐫 = 𝟎𝟎, it is a trivial solution.  



5 

Multipole Expansion (Potentials at large distances)  
• What is the potential due to a point charge (monopole)? 

V 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑟𝑟

 

• What is the potential due to a dipole at large distance? 

V 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞

r+  
−

𝑞𝑞
r−  

 

r±
2 = 𝑟𝑟2 +

𝑑𝑑
2

2

∓ 𝑟𝑟𝑑𝑑cos𝜃𝜃 

≈ 𝑟𝑟2 1 ∓
𝑑𝑑
𝑟𝑟

cos𝜃𝜃  

for 𝑟𝑟 ≫ 𝑑𝑑, and using binomial expansion 
1
r±

= 

(for 𝑟𝑟 ≫ 𝑑𝑑) 

1
r+
−

1
r−

= 

V 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞𝑑𝑑cos𝜃𝜃 
𝑟𝑟2

 

(goes like 𝟏𝟏/𝒓𝒓) 

(goes like 𝟏𝟏/𝒓𝒓𝟐𝟐 at large 𝒓𝒓) 

= 𝑟𝑟2 1 ∓
𝑑𝑑
𝑟𝑟

cos𝜃𝜃 +
𝑑𝑑2

4𝑟𝑟2
 

≈
1
𝑟𝑟

1 ±
𝑑𝑑
2𝑟𝑟

cos𝜃𝜃
 

  So, 
𝑑𝑑
𝑟𝑟2

cos𝜃𝜃 
1
𝑟𝑟

1 ∓
𝑑𝑑
𝑟𝑟

cos𝜃𝜃
−12

 



6 

Multipole Expansion (Potentials at large distances)  

• What is the potential due to a quadrupole at large distance? 

(goes like 𝟏𝟏/𝒓𝒓𝟑𝟑 at large 𝒓𝒓) 

• What is the potential due to a octopole at large distance? 

(goes like 𝟏𝟏/𝒓𝒓𝟒𝟒 at large 𝒓𝒓) 

Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in 
terms of the number of charges.   

Note 2: The dipole potential need not be produced by a two-charge system only . A 
general 𝑛𝑛-charge system can have any multipole contribution. 
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Multipole Expansion (Potentials at large distances)  
• What is the potential due to a 

localized charge distribution? 

V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑞𝑞
r   =

1
4𝜋𝜋𝜖𝜖0

�
𝜌𝜌(𝐫𝐫′)

r 𝑑𝑑𝜏𝜏′  

Using the cosine rule, 

r2 = 𝑟𝑟2 + 𝑟𝑟′2 − 2𝑟𝑟𝑟𝑟′cos𝛼𝛼 

r2 = 𝑟𝑟2 1 +
𝑟𝑟′

𝑟𝑟

2

− 2
𝑟𝑟′

𝑟𝑟
cos𝛼𝛼  

Define:  𝜖𝜖 ≡
𝑟𝑟′

𝑟𝑟
𝑟𝑟′

𝑟𝑟
− 2cos𝛼𝛼  r = 

1
r

= 

1
r

=
1
𝑟𝑟

1 −
1
2
𝜖𝜖 +

3
8
𝜖𝜖2 −

5
16

𝜖𝜖3 + ⋯  (using binomial expansion) 

So, 

Or, 

Source coordinates: (𝑟𝑟′,𝜃𝜃′,𝜙𝜙′)  
Observation point coordinates: (𝑟𝑟,𝜃𝜃,𝜙𝜙)  
Angle between 𝐫𝐫 and 𝐫𝐫′: 𝛼𝛼 r = 𝑟𝑟  1 +

𝑟𝑟′

𝑟𝑟
𝑟𝑟′

𝑟𝑟
− 2cos𝛼𝛼  

1
𝑟𝑟

1 + 𝜖𝜖 −1/2 

𝑟𝑟 1 + 𝜖𝜖 



Multipole Expansion (Potentials at large distances)  

1
r

=
1
𝑟𝑟

1 −
1
2
𝜖𝜖 +

3
8
𝜖𝜖2 −

5
16

𝜖𝜖3 + ⋯  

=
1
𝑟𝑟 1 −

1
2

𝑟𝑟′

𝑟𝑟
𝑟𝑟′

𝑟𝑟 − 2cos𝛼𝛼 +
3
8

𝑟𝑟′

𝑟𝑟

2 𝑟𝑟′

𝑟𝑟 − 2cos𝛼𝛼
2

−
5

16
𝑟𝑟′

𝑟𝑟

3 𝑟𝑟′

𝑟𝑟 − 2cos𝛼𝛼
3

+ ⋯  

=
1
𝑟𝑟 1 +

𝑟𝑟′

𝑟𝑟 cos𝛼𝛼 +
𝑟𝑟′

𝑟𝑟

2

3cos2𝛼𝛼 − 1 /2 −
𝑟𝑟′

𝑟𝑟

3

5cos3𝛼𝛼 − 3cos𝛼𝛼 /2 + ⋯  

=
1
𝑟𝑟 �

𝑟𝑟′

𝑟𝑟

𝑛𝑛∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛(cos𝛼𝛼) 

V(𝐫𝐫) 
8 

=
1

4𝜋𝜋𝜖𝜖0
�

1
𝑟𝑟 𝑛𝑛+1

∞

𝑛𝑛=0

� 𝑟𝑟′ 𝑛𝑛 𝑃𝑃𝑛𝑛(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ =
1

4𝜋𝜋𝜖𝜖0
�
𝜌𝜌(𝐫𝐫′)

r 𝑑𝑑𝜏𝜏′  

• What is the potential due to a 
localized charge distribution? 

V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑞𝑞
r   =

1
4𝜋𝜋𝜖𝜖0

�
𝜌𝜌(𝐫𝐫′)

r 𝑑𝑑𝜏𝜏′  

𝑃𝑃𝑛𝑛(cos𝛼𝛼) are Legendre polynomials 



V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�

1
𝑟𝑟 𝑛𝑛+1

∞

𝑛𝑛=0

� 𝑟𝑟′ 𝑛𝑛 𝑃𝑃𝑛𝑛(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

Multipole Expansion of 𝐕𝐕(𝐫𝐫) 

Monopole potential 
( 1/𝑟𝑟 dependence) 

Dipole potential 
( 1/𝑟𝑟2 dependence) 

Quadrupole potential 
( 1/𝑟𝑟3 dependence) 
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Multipole Expansion (Potentials at large distances)  
• What is the potential due to a 

localized charge distribution? 

V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑞𝑞
r   =

1
4𝜋𝜋𝜖𝜖0

�
𝜌𝜌(𝐫𝐫′)

r 𝑑𝑑𝜏𝜏′  

=
1

4𝜋𝜋𝜖𝜖0𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ +

1
4𝜋𝜋𝜖𝜖0𝑟𝑟2

� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ +
1

4𝜋𝜋𝜖𝜖0𝑟𝑟3
� 𝑟𝑟′ 2 3

2 cos2𝛼𝛼 −
1
2 𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

+⋯ 



Multipole Expansion (Few comments)  

• More terms can be added if greater accuracy is required 

• It is an exact expression, not an approximation. 

• At large 𝒓𝒓, the potential can be approximated by the first non-zero term. 

• A particular term in the expansion is defined by its 𝒓𝒓 dependence  
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+
1

4𝜋𝜋𝜖𝜖0𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ +

1
4𝜋𝜋𝜖𝜖0𝑟𝑟3

� 𝑟𝑟′ 2 3
2

cos2𝛼𝛼 −
1
2

𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

+⋯ 

V 𝐫𝐫  

=
1

4𝜋𝜋𝜖𝜖0𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

Monopole potential 
( 1/𝑟𝑟 dependence) 

Dipole potential 
( 1/𝑟𝑟2 dependence) 

Quadrupole potential 
( 1/𝑟𝑟3 dependence) 



Questions 1: 

Q: In this following configuration, is the “large 𝐫𝐫” limit 
valid, since the source dimensions are much smaller than 𝐫𝐫? 

Ans: No. The “large 𝐫𝐫” limit essentially mean 𝐫𝐫 ≫ |𝐫𝐫′|. 
In majority of the situations, the charge distribution is 
centered at the origin and therefore the “large 𝐫𝐫” limit is 
the same as source dimension being smaller than 𝐫𝐫.  
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Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

Monopole term: 

=
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑟𝑟

 

• 𝑄𝑄 = ∫𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ is the total charge 
• If 𝑄𝑄 = 0, monopole term is zero. 
• For a collection of point charges 

Dipole term: 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

𝛼𝛼 is the angle between 𝐫𝐫 and 𝐫𝐫′. 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
𝐫𝐫� ⋅ � 𝐫𝐫′𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

• 𝐩𝐩 ≡ ∫ 𝐫𝐫′𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ is called the dipole 
moment of a charge distribution 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

• If 𝐩𝐩 = 0, dipole term is zero. 

• For a collection of point charges. 

Multipole Expansion (Monopole and Dipole terms)  

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

So,  𝑟𝑟′ cos𝛼𝛼 = 𝐫𝐫� ⋅ 𝐫𝐫′ 
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Monopole term: 

Example: A three-charge system 

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 = −𝑞𝑞 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 = 𝑞𝑞𝑎𝑎 𝒛𝒛� + −𝑞𝑞𝑎𝑎 − 𝑞𝑞 −𝑎𝑎 𝒚𝒚� = 𝑞𝑞𝑎𝑎 𝒛𝒛� 

Therefore the system will have both monopole and dipole contributions 
13 

Multipole Expansion (Monopole and Dipole terms)  

Dipole term: 

→
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ →

1
4𝜋𝜋𝜖𝜖0

𝑄𝑄
𝑟𝑟

 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

(for point 
charges) 

(for point 
charges) 



Monopole term: 

Dipole term: 

→
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1
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Multipole Expansion (Monopole and Dipole terms)  

Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ →

1
4𝜋𝜋𝜖𝜖0

𝑄𝑄
𝑟𝑟

 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

Example: Origin of Coordinates 

𝑄𝑄 = 𝑞𝑞 

𝐩𝐩 = 0 

Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑟𝑟

 

Vdip 𝐫𝐫 = 0 

𝑄𝑄 = 𝑞𝑞 

𝐩𝐩 = 𝑞𝑞𝑑𝑑𝒚𝒚� 

Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑟𝑟
≠

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞
r  

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

(for point 
charges) 

(for point 
charges) 



Questions 2: 

𝑄𝑄 = 𝑞𝑞 

𝐩𝐩 = 𝑞𝑞𝑑𝑑𝒚𝒚� 

Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
𝑟𝑟
≠

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞
r  

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

Q: Why not calculate the potential directly ?? 

Ans: Yes, that is what should be done.  For a point charge, we don’t need a multipole 
expansion to find the potential. This is only for illustrating the connection. 
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The electric field of pure dipole ( 𝑸𝑸 = 𝟎𝟎 )  

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 =
1

4𝜋𝜋𝜖𝜖0
𝑝𝑝𝐳𝐳� ⋅ 𝐫𝐫�
𝑟𝑟2

 =
1

4𝜋𝜋𝜖𝜖0
𝑝𝑝cos𝜃𝜃
𝑟𝑟2

 

𝐄𝐄 𝐫𝐫 = −𝛁𝛁V 

𝐸𝐸𝑟𝑟 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

=
2𝑝𝑝cos𝜃𝜃
4𝜋𝜋𝜖𝜖0𝑟𝑟3

 

𝐸𝐸𝜃𝜃 = −
1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

=
𝑝𝑝sin𝜃𝜃
4𝜋𝜋𝜖𝜖0𝑟𝑟3

 

𝐸𝐸𝜙𝜙 = −
1

𝑟𝑟sin𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙

= 0 

𝐄𝐄dip 𝐫𝐫 =
𝑝𝑝

4𝜋𝜋𝜖𝜖0𝑟𝑟3
(2cos𝜃𝜃 𝐫𝐫� + sin𝜃𝜃 �̂�𝜃) 
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𝑄𝑄 = 0  Assume 𝐩𝐩 = 𝑝𝑝𝐳𝐳� 𝐩𝐩 ≠ 0 And 
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