Semester II, 2017-18
Department of Physics, IIT Kanpur

PHY103A: Lecture \# 11
 (Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha
24-Jan-2018

Notes

- No Class on Friday; No office hour.
- HW \# 4 has been posted
- Solutions to HW \# 5 have been posted

Summary of Lecture \# 10:

The potential in the region above the infinite grounded conducting plane?
$\mathrm{V}(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-\mathrm{d})^{2}}}-\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}+\mathrm{d})^{2}}}\right]$

The potential outside the grounded conducting sphere?

$$
\begin{gathered}
q^{\prime}=-\frac{R}{a} q \quad b=\frac{R^{2}}{a} \\
\mathrm{~V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{\imath}+\frac{q^{\prime}}{\imath^{\prime}}\right)
\end{gathered}
$$

Question:

The potential in the region above the infinite grounded conducting plane?
$\mathrm{V}(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-\mathrm{d})^{2}}}-\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}+\mathrm{d})^{2}}}\right]$

Q : $\mathrm{Is} \mathrm{kV}(\mathbf{r})$ also a solution, where k is a constant?
Ans: No
Corollary to First Uniqueness Theorem: The potential in a volume is uniquely determined if (a) the charge desity throughout the region and (b) the value of V at all boundaries, are specified.

In this case one has to satisfy the Poisson's equation. But $\mathrm{kV}(\mathbf{r})$ does not satisfy it.

$$
\nabla^{2} \mathrm{~V}_{1}=-\frac{\rho}{\epsilon_{0}}
$$

Exception: Only when $\rho=0$ (everywhere), $\mathrm{kV}(\mathbf{r})$ can be a solution as well But then since in this case $V(\mathbf{r})=\mathbf{0}$, it is a trivial solution.

Multipole Expansion (Potentials at large distances)

- What is the potential due to a point charge (monopole)?

$$
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \quad \text { (goes like } 1 / r \text {) }
$$

- What is the potential due to a dipole at large distance?

$$
\begin{aligned}
& \text { What is the potential due to a dipole at large distance? } \\
& \begin{aligned}
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r_{+}}-\frac{q}{r_{-}}\right)
\end{aligned} \\
& \begin{aligned}
r_{ \pm}^{2}=r^{2}+\left(\frac{d}{2}\right)^{2} \mp r d \cos \theta & =r^{2}\left(1 \mp \frac{d}{r} \cos \theta+\frac{d^{2}}{4 r^{2}}\right) \\
& \approx r^{2}\left(1 \mp \frac{d}{r} \cos \theta\right)(\text { for } r \gg d)
\end{aligned}
\end{aligned}
$$

for $r \gg d$, and using binomial expansion

$$
\begin{gathered}
\frac{1}{r_{ \pm}}=\frac{1}{r}\left(1 \mp \frac{d}{r} \cos \theta\right)^{-\frac{1}{2}} \approx \frac{1}{r}\left(1 \pm \frac{d}{2 r} \cos \theta\right) \quad \text { So, } \frac{1}{r_{+}}-\frac{1}{r_{-}}=\frac{d}{r^{2}} \cos \theta \\
\mathrm{~V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q d \cos \theta}{r^{2}} \quad \text { (goes like } 1 / r^{2} \text { at large } r \text {) }
\end{gathered}
$$

Multipole Expansion (Potentials at large distances)

- What is the potential due to a quadrupole at large distance? (goes like $1 / r^{3}$ at large r)

- What is the potential due to a octopole at large distance? (goes like $1 / r^{4}$ at large r)

Note1: Multipole terms are defined in terms of their \boldsymbol{r} dependence, not in terms of the number of charges.

Note 2: The dipole potential need not be produced by a two-charge system only . A general n-charge system can have any multipole contribution.

Multipole Expansion (Potentials at large distances)

- What is the potential due to a localized charge distribution?

$$
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r} d \tau^{\prime}
$$

Using the cosine rule,

$$
\begin{aligned}
\imath^{2} & =r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \alpha \\
\imath^{2} & =r^{2}\left[1+\left(\frac{r^{\prime}}{r}\right)^{2}-2\left(\frac{r^{\prime}}{r}\right) \cos \alpha\right] \\
\imath & =r \sqrt{1+\left(\frac{r^{\prime}}{r}\right)\left(\frac{r^{\prime}}{r}-2 \cos \alpha\right)} \\
\imath & =r \sqrt{1+\epsilon}
\end{aligned}
$$

Source coordinates: $\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$
Observation point coordinates: (r, θ, ϕ) Angle between \mathbf{r} and $\mathbf{r}^{\prime}: \alpha$

Define: $\epsilon \equiv\left(\frac{r^{\prime}}{r}\right)\left(\frac{r^{\prime}}{r}-2 \cos \alpha\right)$
So, $\frac{1}{r}=\frac{1}{r}(1+\epsilon)^{-1 / 2}$
Or, $\frac{1}{r}=\frac{1}{r}\left(1-\frac{1}{2} \epsilon+\frac{3}{8} \epsilon^{2}-\frac{5}{16} \epsilon^{3}+\cdots\right)$

Multipole Expansion (Potentials at large distances)

- What is the potential due to a localized charge distribution?

$$
\begin{aligned}
& \mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r} d \tau^{\prime} \\
& \frac{1}{r}= \frac{1}{r}\left(1-\frac{1}{2} \epsilon+\frac{3}{8} \epsilon^{2}-\frac{5}{16} \epsilon^{3}+\cdots\right) \\
&= \frac{1}{r}\left[1-\frac{1}{2}\left(\frac{r^{\prime}}{r}\right)\left(\frac{r^{\prime}}{r}-2 \cos \alpha\right)+\frac{3}{8}\left(\frac{r^{\prime}}{r}\right)^{2}\left(\frac{r^{\prime}}{r}-2 \cos \alpha\right)^{2}-\frac{5}{16}\left(\frac{r^{\prime}}{r}\right)^{3}\left(\frac{r^{\prime}}{r}-2 \cos \alpha\right)^{3}+\cdots\right] \\
&=\frac{1}{r}\left[1+\left(\frac{r^{\prime}}{r}\right)(\cos \alpha)+\left(\frac{r^{\prime}}{r}\right)^{2}\left(3 \cos ^{2} \alpha-1\right) / 2-\left(\frac{r^{\prime}}{r}\right)^{3}\left(5 \cos ^{3} \alpha-3 \cos \alpha\right) / 2+\cdots\right] \\
&= \frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{n} P_{n}(\cos \alpha) \\
& \mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r} d \tau^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int\left(r^{\prime}\right)^{n} P_{n}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
\end{aligned}
$$

Multipole Expansion (Potentials at large distances)

- What is the potential due to a localized charge distribution?

$$
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r} d \tau^{\prime}
$$

$$
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int\left(r^{\prime}\right)^{n} P_{n}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
$$

$$
=\frac{1}{4 \pi \epsilon_{0} r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{4 \pi \epsilon_{0} r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{4 \pi \epsilon_{0} r^{3}} \int\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
$$

Monopole potential ($1 / r$ dependence)

Dipole potential ($1 / r^{2}$ dependence)

Quadrupole potential ($1 / r^{3}$ dependence)

Multipole Expansion (Few comments)

$V(\mathbf{r})$

$$
=\frac{1}{4 \pi \epsilon_{0} r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{4 \pi \epsilon_{0} r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{4 \pi \epsilon_{0} r^{3}} \int\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
$$

$$
+\cdots
$$

Monopole potential ($1 / r$ dependence)

Dipole potential ($1 / r^{2}$ dependence)

Quadrupole potential ($1 / r^{3}$ dependence)

- It is an exact expression, not an approximation.
- A particular term in the expansion is defined by its r dependence
- At large r, the potential can be approximated by the first non-zero term.
- More terms can be added if greater accuracy is required

Questions 1:

Q: In this following configuration, is the "large \mathbf{r} " limit valid, since the source dimensions are much smaller than \mathbf{r} ?

Ans: No. The "large \mathbf{r} " limit essentially mean $|\mathbf{r}| \gg\left|\mathbf{r}^{\prime}\right|$. In majority of the situations, the charge distribution is centered at the origin and therefore the "large \mathbf{r} " limit is
 the same as source dimension being smaller than \mathbf{r}.

Multipole Expansion (Monopole and Dipole terms)

Monopole term:

$\mathrm{V}_{\text {mono }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r}$

- $Q=\int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}$ is the total charge
- If $Q=0$, monopole term is zero.
- For a collection of point charges

$$
Q=\sum_{i=1}^{n} q_{i}
$$

Dipole term:

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
$$ α is the angle between \mathbf{r} and \mathbf{r}^{\prime}.

$$
\begin{gathered}
\text { So, } r^{\prime}(\cos \alpha)=\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime} \\
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \hat{\mathbf{r}} \cdot \int \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
\end{gathered}
$$

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}
$$

- $\mathbf{p} \equiv \int \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}$ is called the dipole moment of a charge distribution
- If $\mathbf{p}=0$, dipole term is zero.
- For a collection of point charges.

$$
\mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}
$$

Multipole Expansion (Monopole and Dipole terms)

Monopole term:

$$
\mathrm{V}_{\mathrm{mono}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \quad \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} \underset{\text { charges) }}{\text { (for point }} \quad Q=\sum_{i=1}^{n} q_{i}
$$

Dipole term:

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} \underset{\text { charges) }}{\text { (for point }} \mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}
$$

Example: A three-charge system

$$
\begin{aligned}
& Q=\sum_{i=1}^{n} q_{i}=-q \\
& \mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}=q a \hat{\mathbf{z}}+[-q a-q(-a)] \widehat{\boldsymbol{y}}=q a \widehat{\mathbf{z}}
\end{aligned}
$$

Multipole Expansion (Monopole and Dipole terms)

Monopole term:

$$
\mathrm{V}_{\mathrm{mono}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \quad \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} \underset{\text { charges) }}{\text { (for point }} \quad Q=\sum_{i=1}^{n} q_{i}
$$

Dipole term:

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} \underset{\text { (for point }}{\text { charges })} \mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}
$$

Example: Origin of Coordinates

$$
\begin{array}{ll|ll}
Q=q & \mathrm{~V}_{\text {mono }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} & Q=q & \mathrm{~V}_{\text {mono }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \neq \frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \\
\mathbf{p}=0 & \mathrm{~V}_{\text {dip }}(\mathbf{r})=0 & \mathbf{p}=q d \widehat{\boldsymbol{y}} & \mathrm{~V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{1 \pi-} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{2}
\end{array}
$$

Questions 2:

$$
\begin{array}{ll}
Q=q & \mathrm{~V}_{\text {mono }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \neq \frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \\
\mathbf{p}=q d \hat{\boldsymbol{y}} & \mathrm{~V}_{\text {dip }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}
\end{array}
$$

Q: Why not calculate the potential directly ??
Ans: Yes, that is what should be done. For a point charge, we don't need a multipole expansion to find the potential. This is only for illustrating the connection.

The electric field of pure dipole ($Q=0$)

$$
\begin{aligned}
& Q=0 \text { And } \mathbf{p} \neq 0 \quad \text { Assume } \mathbf{p}=p \hat{\mathbf{z}} \\
& \mathrm{~V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{p \hat{\mathbf{z}} \cdot \hat{\mathbf{r}}}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{p \cos \theta}{r^{2}} \\
& \mathbf{E}(\mathbf{r})=-\nabla \mathrm{V} \\
& E_{r}=-\frac{\partial V}{\partial r}=\frac{2 p \cos \theta}{4 \pi \epsilon_{0} r^{3}} \\
& E_{\theta}=-\frac{1}{r} \frac{\partial V}{\partial \theta}=\frac{p \sin \theta}{4 \pi \epsilon_{0} r^{3}} \\
& E_{\phi}=-\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}=0
\end{aligned}
$$

