Semester II, 2017-18
Department of Physics, IIT Kanpur

PHY103A: Lecture \# 16
 (Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha 05-Feb-2018

Notes

- Quiz-1 is tomorrow (11:00-11:15 am).

Summary of Lecture \# 15:

- Electric displacement and Dielectric constant $\mathbf{D}=\epsilon \mathbf{E}$

$$
\text { Define: } \epsilon \equiv \epsilon_{0}\left(1+\chi_{e}\right) \quad \text { Define: } \epsilon_{r} \equiv \frac{\epsilon}{\epsilon_{0}}=\left(1+\chi_{e}\right)
$$

- Clausius-Mossotti formula

$$
\mathbf{p}=\alpha \mathbf{E}_{\text {else }}
$$

$$
\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E} \quad \alpha=\frac{3 \epsilon_{0}}{N} \frac{\left(\epsilon_{r}-1\right)}{\left(\epsilon_{r}+2\right)}
$$

- Capacitance with dielectric filling

$$
C=\frac{Q}{V}=C_{\mathrm{vac}} \epsilon_{r}
$$

- Energy in dielectric systems

$$
W=\frac{1}{2} \int_{\text {all space }} \mathbf{D} \cdot \mathbf{E} d \tau
$$

- Force in dielectric system

$$
F=\frac{1}{2} V^{2} \frac{d C}{d x}
$$

Electrostatics in action

- Faraday Cage

- Lightning rods
- Capacitor

Electrostatics in action

- Laser Printer

- Some fun stuff

Magnetostatics

Stationary charges \longrightarrow Constant Electric field \longrightarrow Electrostatics

Steady currents \longrightarrow Constant Magnetic field \longrightarrow Magnetostatics

Non-stationary charges and/or Non-steady currents Changing Electric and \longrightarrow Electrodynamics Magnetic field

Force on a point charge Q :

Electric Force: $\quad \mathbf{F}_{\text {elec }}=\mathbf{Q E}$
Magnetic Force: $\mathbf{F}_{\text {mag }}=\mathrm{Q}(\mathbf{v} \times \mathbf{B}) \quad$ Lorentz Force Law

Total Force: $\quad \mathbf{F}=\mathbf{F}_{\text {elec }}+\mathbf{F}_{\text {mag }}=\mathrm{Q}(\mathbf{E}+\mathbf{v} \times \mathbf{B})$

Work done by magnetic forces

The work done by a magnetic force is zero !

$$
\begin{aligned}
\mathbf{W}_{\mathrm{mag}}=\int \mathbf{F}_{\mathrm{mag}} \cdot d \mathbf{l} & =\int \mathrm{Q}(\mathbf{v} \times \mathbf{B}) \cdot d \mathbf{l} \\
& =\int \mathrm{Q}(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} d t \\
& =0
\end{aligned}
$$

- Magnetic forces do no work
- Magnetic forces can change the direction in which a particle moves.
- Magnetic forces do not change the speed with which a particle moves.

Currents

- Current is charge flow per unit time $I=\frac{d q}{d t}$
- It is measured in Coulombs per second, or Amperes (A).

Charge flowing in a wire is described by Current

$$
\mathbf{I}=\frac{d q}{d t}=\frac{\lambda d \mathbf{l}}{d t}=\lambda \mathbf{v}
$$

- The direction of current is in the direction of charge-flow.
- Conventionally, this is the direction opposite to the flow of electrons.

Magnetic force on a current carrying wire:

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{mag}}=(\mathbf{v} \times \mathbf{B}) \mathrm{Q}=\int(\mathbf{v} \times \mathbf{B}) d q=\int(\mathbf{v} \times \mathbf{B}) \lambda d l=\int(\mathbf{I} \times \mathbf{B}) d l \\
& \mathbf{F}_{\mathrm{mag}}=\int(\mathbf{I} \times \mathbf{B}) d l=I \int(d \mathbf{l} \times \mathbf{B})
\end{aligned}
$$

Currents

- Current is charge flow per unit time $I=\frac{d q}{d t}$
- It is measured in Coulombs per second, or Amperes (A).

Charge flowing on a surface is described by surface current density

$$
\mathbf{K}=\frac{d \mathbf{I}}{d l_{\perp}}=\sigma \mathbf{v}
$$

- Current density is a vector quantity.

Magnetic force on the surface current:

$$
\mathbf{F}_{\mathrm{mag}}=(\mathbf{v} \times \mathbf{B}) \mathrm{Q}=\int(\mathbf{v} \times \mathbf{B}) \sigma d a=\int(\mathbf{K} \times \mathbf{B}) d a
$$

Currents

- Current is charge flow per unit time $I=\frac{d q}{d t}$
- It is measured in Coulombs per second, or Amperes (A).

Charge flowing in a volume is described by volume current density

Magnetic force on the volume current:

$$
\mathbf{F}_{\mathrm{mag}}=(\mathbf{v} \times \mathbf{B}) \mathrm{Q}=\int(\mathbf{v} \times \mathbf{B}) \rho d \tau=\int(\mathbf{J} \times \mathbf{B}) d \tau
$$

The Continuity Equation (Conservation of Charge)

$$
\mathbf{J}=\frac{d \mathbf{I}}{d a_{\perp}} \quad \Rightarrow \mathrm{I}=\int_{S} \mathrm{~J} d a_{\perp}
$$

$$
\Rightarrow \mathrm{I}=\int \mathbf{J} \cdot d \mathbf{a} \quad \text { • Current crossing a surface }
$$

- Total charge per unit time crossing a surface

For a closed surface

$$
\mathrm{I}=\oint_{S} \mathbf{J} \cdot d \mathbf{a} \quad \text { Total charge per unit time crossing a closed surface }
$$

$$
\oint_{S} \mathbf{J} \cdot d \mathbf{a}=\int_{V}(\boldsymbol{\nabla} \cdot \mathbf{J}) d \tau \quad \text { Total charge per unit time leaving the volume } V \text {. }
$$

But, total charge per unit time leaving the volume V is $-\frac{d}{d t}\left(\int_{V} \rho d \tau\right)=-\int_{V} \frac{d \rho}{d t} d \tau$

$$
\text { So, } \int_{V}(\boldsymbol{\nabla} \cdot \mathbf{J}) d \tau=-\int_{V} \frac{d \rho}{d t} d \tau \Rightarrow \nabla \cdot \mathbf{J}=-\frac{d \rho}{d t} \text { The Continuity Equation }
$$

