Semester II, 2017-18
 Department of Physics, IIT Kanpur

PHY103A: Lecture \# 18

(Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha 09-Feb-2018

Summary of Lecture \# 17:

- The magnetic field produced by a steady line current

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{I} \times \hat{r}}{r^{2}} d l^{\prime}
$$

- The magnetic field produced by a surface current

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{K}\left(\mathbf{r}^{\prime}\right) \times \hat{r}}{r^{2}} d a^{\prime}
$$

- The magnetic field produced by a volume current

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{r}}{r^{2}} d \tau^{\prime}
$$

- The magnetic field due to a finite-size wire with current I

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi s}\left(\sin \theta_{2}+\sin \theta_{1}\right) \hat{\mathbf{x}}
$$

- The magnetic field above a loop with current I

$$
\mathbf{B}(z)=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}
$$

- The Ampere's Law

$$
\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J} \quad \longleftrightarrow \oint \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\mathrm{enc}}
$$

Question/Clarification

- Current

$$
\mathbf{I}=\frac{\lambda d \mathbf{l}}{d t}=\lambda \mathbf{v}
$$

This is per unit transverse length (not area)

$$
\mathbf{J}=\frac{d \mathbf{I}}{d a_{\perp}}=\rho \mathbf{v}
$$

This is per unit transverse area (not volume)

The Divergence of B

The magnetic field produced by a volume current

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r})= \frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{\imath}}{\tau^{2}} d \tau^{\prime} \\
& \quad \quad=\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \hat{\mathbf{x}}+\left(\boldsymbol{y}-\boldsymbol{y}^{\prime}\right) \hat{\boldsymbol{y}}+\left(\boldsymbol{z}-\boldsymbol{z}^{\prime}\right) \hat{\boldsymbol{z}}
\end{aligned}
$$

Take the divergence of the above magnetic field (with respect to the unprimed coordinates

$$
\boldsymbol{\nabla} \cdot \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \boldsymbol{\nabla} \cdot\left(\frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{\imath}}{\tau^{2}}\right) d \tau^{\prime}
$$

Using $\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})$

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\hat{r}}{r^{2}} \cdot\left(\boldsymbol{\nabla} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right)\right) d \tau^{\prime}-\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot\left(\boldsymbol{\nabla} \times \frac{\hat{r}}{r^{2}}\right) d \tau^{\prime} \\
& \boldsymbol{\nabla} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right)=\mathbf{0} \\
& \boldsymbol{\nabla} \times \frac{\hat{r}}{r^{2}}=\mathbf{0} . \\
& \text { since } \mathbf{J}\left(\mathbf{r}^{\prime}\right) \text { does not depend on } \mathbf{r} \\
& \text { (Prob. } 1.62 \text { Griffiths, 3 }{ }^{\text {rd }} \text { ed.) }
\end{aligned}
$$

$$
\boldsymbol{\nabla} \cdot \mathbf{B}(\mathbf{r})=0
$$

The Curl of B

The magnetic field produced by a volume current

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{\imath}}{\tau^{2}} d \tau^{\prime} \\
& \quad \imath=\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \hat{\mathbf{x}}+\left(\boldsymbol{y}-\boldsymbol{y}^{\prime}\right) \hat{\boldsymbol{y}}+\left(\boldsymbol{z}-\boldsymbol{z}^{\prime}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Take the curl of the above magnetic field (with respect to the unprimed coordinates

$$
\boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \boldsymbol{\nabla} \times\left(\frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{r}}{r^{2}}\right) d \tau^{\prime}
$$

$$
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})
$$

$\boldsymbol{\nabla} \times\left(\frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{r}}{r^{2}}\right)=\left(\frac{\hat{r}}{\imath^{2}} \cdot \boldsymbol{\nabla}\right) \mathbf{J}\left(\mathbf{r}^{\prime}\right)-\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{r^{2}}+\mathbf{J}\left(\mathbf{r}^{\prime}\right)\left(\boldsymbol{\nabla} \cdot \frac{\hat{r}}{r^{2}}\right)-\frac{\hat{r}}{r^{2}}\left(\boldsymbol{\nabla} \cdot \mathbf{J}\left(\mathbf{r}^{\prime}\right)\right)$

$$
\boldsymbol{\nabla} \cdot \mathbf{J}\left(\mathbf{r}^{\prime}\right)=\mathbf{0} \text { since } \mathbf{J}\left(\mathbf{r}^{\prime}\right) \text { does not depend on } \mathbf{r}
$$

$$
\left(\frac{\hat{r}}{z^{2}} \cdot \boldsymbol{\nabla}\right) \mathbf{J}\left(\mathbf{r}^{\prime}\right)=\mathbf{0} \text { since } \mathbf{J}\left(\mathbf{r}^{\prime}\right) \text { does not depend on } \mathbf{r}
$$

$$
\boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{r}^{\prime}\right)\left(\boldsymbol{\nabla} \cdot \frac{\hat{r}}{r^{2}}\right) d \tau^{\prime}-\frac{\mu_{0}}{4 \pi} \int\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{r^{2}} d \tau^{\prime}
$$

The Curl of B

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{r}^{\prime}\right)\left(\boldsymbol{\nabla} \cdot \frac{\hat{r}}{r^{2}}\right) d \tau^{\prime}-\frac{\mu_{0}}{4 \pi} \int\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{r^{2}} d \tau^{\prime} \\
& \boldsymbol{\nabla} \cdot \frac{\hat{r}}{r^{2}}=4 \pi \delta^{3}(r) \\
& \begin{array}{r}
\boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})=\mu_{0} \mathbf{J}(\mathbf{r})-\frac{\mu_{0}}{4 \pi} \int\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{r^{2}} d \tau^{\prime} \\
-\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{r^{2}}=\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}^{\prime}\right) \frac{\hat{r}}{r^{2}} \\
=\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}^{\prime}\right)\left[\frac{\left(x-x^{\prime}\right)}{r^{3}} \hat{\mathbf{x}}+\frac{\left(y-y^{\prime}\right)}{r^{3}} \hat{\mathbf{y}}+\frac{\left(z-z^{\prime}\right)}{r^{3}} \hat{\mathbf{z}}\right] \\
\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}^{\prime}\right) \frac{\left(x-x^{\prime}\right)}{r^{3}}=\boldsymbol{\nabla}^{\prime} \cdot\left[\frac{\left(x-x^{\prime}\right)}{r^{3}} \mathbf{J}\right]-\frac{\left(x-x^{\prime}\right)}{r^{3}}\left(\boldsymbol{\nabla}^{\prime} \cdot \mathbf{J}\right)=\boldsymbol{\nabla}^{\prime} \cdot\left[\frac{\left(x-x^{\prime}\right)}{r^{3}} \mathbf{J}\right] \\
\boldsymbol{\nabla} \cdot(f \mathbf{A})=f(\boldsymbol{\nabla} \cdot \mathbf{A})+(\mathbf{A} \cdot \boldsymbol{\nabla}) f
\end{array}
\end{aligned}
$$

Magnetostatics implies steady current. So $\boldsymbol{\nabla}^{\prime} \cdot \mathbf{J}=-\frac{\mathrm{d} \rho}{d t}=0$

$$
\int_{V o l} \boldsymbol{\nabla}^{\prime} \cdot\left[\frac{\left(x-x^{\prime}\right)}{r^{3}} \mathbf{J}\right] d \tau^{\prime}=\oint_{\text {surf }}\left[\frac{\left(x-x^{\prime}\right)}{r^{3}} \mathbf{J}\right] \cdot d \mathbf{a}=0
$$

For large enough integration volume, all the currents are inside. So $\mathbf{J}=0$ at the surface.

The Curl of B

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})= & \frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{r}^{\prime}\right)\left(\boldsymbol{\nabla} \cdot \frac{\hat{r}}{r^{2}}\right) d \tau^{\prime}-\frac{\mu_{0}}{4 \pi} \int\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{z^{2}} d \tau^{\prime} \\
& \boldsymbol{\nabla} \cdot \frac{\hat{r}}{r^{2}}=4 \pi \delta^{3}(\imath)
\end{aligned}
$$

$\boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})=\mu_{0} \mathbf{J}(\mathbf{r})-\frac{\mu_{0}}{4 \pi} \int\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{z^{2}} d \tau^{\prime}$

For large enough integration volume, all the currents are inside. So $\mathbf{J}=0$ at the surface.

So,

$$
\frac{\mu_{0}}{4 \pi} \int\left(\mathbf{J}\left(\mathbf{r}^{\prime}\right) \cdot \boldsymbol{\nabla}\right) \frac{\hat{r}}{r^{2}} d \tau^{\prime}=0
$$

$$
\boldsymbol{\nabla} \times \mathbf{B}(\mathbf{r})=\mu_{0} \mathbf{J}(\mathbf{r})
$$

Ampere's Law
Ex. 5.9 (Griffiths, $3^{\text {rd }}$ Ed.): Calculate the magnetic field of a very long solenoid. (n closely wound turns per unit length, Radius R, and a steady current I.

Can there be magnetic field in the s direction? No.
Can there be magnetic field in the ϕ direction? No.
Can there be magnetic field in the z direction?

Let's check

For an Amperian loop outside

$$
\oint \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\mathrm{enc}} \Rightarrow \quad B(a) l-B(b) l=0 \quad \Rightarrow \quad B(a)=\mathrm{B}(b), \quad B(a)=\mathrm{B}(b)=\mathrm{B}(\infty)=0 .
$$

For an Amperian loop inside

$$
\begin{aligned}
\oint \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\mathrm{enc}} \Rightarrow & B(s) l-0=\mu_{0} n I l
\end{aligned} \quad \Rightarrow \quad B(s)=\mu_{0} n I \quad \text { (for }(s>R) \quad \begin{array}{ll}
\text { Magnetic field inside a solenoid is } \\
& \mathbf{B}=0 \\
& =\mu_{0} n I \hat{\mathbf{z}} \\
\text { uniform---analogous to capacitor which }(s<R)
\end{array} \quad \begin{aligned}
& \text { produces uniform electric fields. } 8
\end{aligned}
$$

Ampere's Law

Prob 5.15 (Griffiths, $3^{\text {rd }}$ Ed.): Two long coaxial solenoids. Current I flows in opposite directions. Number of turns are n_{1} (inner) and n_{2} (outer). Find magnetic field (i) inside the inner solenoid, (ii) between the solenoids, and (iii) outside both the solenoids.

Field due to a solenoid

$$
\begin{aligned}
\mathbf{B} & =0 & & \text { for }(s>R) \\
& =\mu_{0} n I \hat{\mathbf{z}} & & \text { for }(s<R)
\end{aligned}
$$

Principle of linear superposition $\quad \Rightarrow$
Principle of linear superposition $\quad \Rightarrow$
(i) $\mathbf{B}=\mu_{0} n_{2} I \hat{\mathbf{z}}+\mu_{0} n_{1} I(-\hat{\mathbf{z}})=\mu_{0}\left(n_{2}-n_{1}\right) I \hat{\mathbf{z}}$
(ii) $\mathbf{B}=\mu_{0} n_{2} I \hat{\mathbf{z}}$
(iii) $\mathbf{B}=0$

Magnetostatics and Electrostatics

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\hat{r}}{r^{2}} \rho\left(\mathbf{r}^{\prime}\right) d \tau \quad \mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \hat{r}}{r^{2}} d \tau^{\prime}
$$

$$
\mathbf{F}_{\text {elec }}=\mathrm{QE} \quad \text { Electric Force } \quad \mathbf{F}_{\mathrm{mag}}=\mathrm{Q}(\mathbf{v} \times \mathbf{B}) \quad \text { Magnetic Force }
$$

$\boldsymbol{\nabla} \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} \quad$ Gauss's Law

$$
\boldsymbol{\nabla} \times \mathbf{E}=0
$$

$\boldsymbol{\nabla} \cdot \mathbf{B}=0 \quad$ No Name

$$
\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J} \quad \text { Amperes's Law }
$$

$$
\boldsymbol{\nabla} \times \mathbf{E}=0 \Rightarrow \mathbf{E}=-\boldsymbol{\nabla} \mathrm{V}
$$

Electric Potential (scalar)
Electric field diverges away from a positive charge

$$
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \quad \Rightarrow \quad \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}
$$

Magnetic Vector Potential

Vector Potential (From Lecture \# 4):

If the divergence of a vector field \mathbf{F} is zero everywhere, $(\boldsymbol{\nabla} \cdot \mathbf{F}=0)$, then:
(1) $\int \mathbf{F} \cdot d \mathbf{a}$ is independent of surface. This is because of the divergence theorem
(2) $\oint \mathbf{F} \cdot \mathrm{da}=0$ for any closed surface.

$$
\int_{V o l}(\boldsymbol{\nabla} \cdot \mathbf{F}) d \tau=\oint_{\text {Surf }} \mathbf{F} \cdot d \mathbf{a}
$$

(3) \mathbf{F} is the curl of a vector function: $\mathbf{F}=\boldsymbol{\nabla} \times \mathbf{A}$

- This is because divergence of a curl is always zero $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{A})=0$
- The vector potential is not unique. A gradient $\boldsymbol{\nabla} V$ of a scalar function can be added to \mathbf{A} without affecting the curl, since the curl of a gradient is zero.

