Semester II, 2017-18
Department of Physics, IIT Kanpur

PHY103A: Lecture \# 19
 (Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha
12-Feb-2018

Notes

- Quiz \# 1 is tomorrow

Summary of Lecture \# 18:

- The divergence of a magnetic field is zero.

$$
\boldsymbol{\nabla} \cdot \mathbf{B}(\mathbf{r})=0
$$

- The curl of a magnetic field: The Ampere's Law

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \longleftrightarrow \oint \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\mathrm{enc}}
$$

- Magnetic Vector Potential

$$
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \quad \Rightarrow \quad \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}
$$

Vector Potential (From Lecture \# 4):

If the divergence of a vector field \mathbf{F} is zero everywhere, $(\boldsymbol{\nabla} \cdot \mathbf{F}=0)$, then:
(1) $\int \mathbf{F} \cdot d \mathbf{a}$ is independent of surface. This is because of the divergence theorem
(2) $\oint \mathbf{F} \cdot \mathrm{da}=0$ for any closed surface.

$$
\int_{V o l}(\boldsymbol{\nabla} \cdot \mathbf{F}) d \tau=\oint_{\text {Surf }} \mathbf{F} \cdot d \mathbf{a}
$$

(3) \mathbf{F} is the curl of a vector function: $\mathbf{F}=\boldsymbol{\nabla} \times \mathbf{A}$

- This is because divergence of a curl is always zero $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{A})=0$
- The vector potential is not unique. A gradient $\boldsymbol{\nabla} V$ of a scalar function can be added to \mathbf{A} without affecting the curl, since the curl of a gradient is zero.

Magnetic Vector Potential

$$
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \Rightarrow \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} \quad \text { • } \mathbf{A} \text { is the Magnetic Vector Potential }
$$

- A gradient $\nabla \lambda$ of a scalar function can be added to \mathbf{A} without affecting the magnetic field.

What happens to the Ampere's Law ?

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J} & \Rightarrow \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=\mu_{0} \mathbf{J} \quad \\
& \Rightarrow \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\boldsymbol{\nabla}^{\mathbf{2}} \mathbf{A}=\mu_{0} \mathbf{J}
\end{aligned}
$$

- However, if we can ensure that $\boldsymbol{\nabla} \cdot \mathbf{A}=0$, we can have it in a nice form.
- This can be done since we know that a $\boldsymbol{\nabla} \boldsymbol{\lambda}$ can be added to \mathbf{A} without changing \mathbf{B} Suppose we start with \mathbf{A}_{0}, such that, $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}_{0}$ but, $\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}} \neq \mathbf{0}$.

Then, $\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J} \Rightarrow \boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}}\right)-\boldsymbol{\nabla}^{\mathbf{2}} \mathbf{A}_{\mathbf{0}}=\mu_{0} \mathbf{J}$
Re-define by adding $\boldsymbol{\nabla} \boldsymbol{\lambda}: \quad \mathbf{A}_{\mathbf{0}}+\boldsymbol{\nabla} \lambda \equiv \mathbf{A} \quad$ such that $\boldsymbol{\nabla} \cdot \mathbf{A}=\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}}+\boldsymbol{\nabla}^{\mathbf{2}} \lambda=0$
Then $\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J} \Rightarrow \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\boldsymbol{\nabla}^{\mathbf{2}} \mathbf{A}=\mu_{0} \mathbf{J} \Rightarrow-\boldsymbol{\nabla}^{\mathbf{2}} \mathbf{A}=\mu_{0} \mathbf{J}$

Magnetic Vector Potential

What is the requirement on λ that $\boldsymbol{\nabla} \cdot \mathbf{A}=0$?? Or, $\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}}+\boldsymbol{\nabla}^{2} \lambda=0$??
For a given $\mathbf{A}_{\mathbf{0}}$ the gradient $\boldsymbol{\lambda}$ should be such that

$$
\nabla^{2} \lambda=-\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}} \text { (Poisson’s Equation) }
$$

The solution is: $\lambda(\mathbf{r})=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}}}{\tau} d \tau^{\prime}$
If $\boldsymbol{\nabla} \cdot \mathbf{A}_{\mathbf{0}} \rightarrow \mathbf{0}$, when $\mathbf{r} \rightarrow \infty$.

Recall: $\boldsymbol{\nabla}^{2} V=-\frac{\rho}{\epsilon_{0}}$ (Poisson's Equation)
The solution is: $\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r} d \tau^{\prime}$
If the localized charge distribution $\rho\left(\mathbf{r}^{\prime}\right) \rightarrow \mathbf{0}$, when $\mathbf{r} \rightarrow \infty$.

Thus, one can always redefine the vector potential such that $\boldsymbol{\nabla} \cdot \mathbf{A}=0$ So, the Ampere's law can be written as $-\boldsymbol{\nabla}^{\mathbf{2}} \mathbf{A}=\mu_{0} \mathbf{J}$ It is three Poisson's Equations

$$
\text { So, } \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\imath} d \tau^{\prime} \text { This is simpler than Biot-Savart Law. }
$$

For surface current: $\quad \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{K}\left(\mathbf{r}^{\prime}\right)}{r} d a^{\prime}$
For line current: $\quad \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \mathbf{l}^{\prime}}{r}$

Summary:

Magnetostatics

Magnetostatic Boundary Conditions (Consequences of the fundamental laws):

How does magnetic field (B) change across a boundary containing surface current \mathbf{K} ?

1. Normal component of \mathbf{B} is continuous

$$
\begin{aligned}
& \text { 1. Normal component of } \mathbf{B} \text { is continuous } \\
& \boldsymbol{\nabla} \cdot \mathbf{B}=0 \longleftrightarrow \oint_{\text {surf }} \mathbf{B} \cdot d \mathbf{a}=0 \\
& \mathbf{B}^{\perp}{ }_{\text {above }} A-\mathbf{B}^{\perp}{ }_{\text {below }} A+0+0+0+0=0 \\
& B^{\perp}{ }_{\text {above }}=B^{\perp}{ }_{\text {below }}
\end{aligned}
$$

2. Parallel component of \mathbf{B} is Discontinuous

$$
\begin{gathered}
\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J} \longleftrightarrow \oint_{\text {path }} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} \mathbf{I}_{\mathrm{enc}} \\
\mathbf{B}_{\text {above }}^{\|} l-\mathbf{B}_{\text {below }} l+0+0=\mu_{0} K l
\end{gathered}
$$

$$
B_{\text {above }}-B_{\text {below }}^{\|}=\mu_{0} K
$$

$\left(B^{\perp}{ }_{\text {above }}-B^{\perp}{ }_{\text {below }}\right) \widehat{\mathbf{n}}+\left(B_{\text {above }}^{\|}-B_{\text {below }}\right) \widehat{\mathbf{n}^{\|}}=\mu_{0} \mathbf{K} \times \widehat{\mathbf{n}}$

$$
\mathbf{B}_{\text {above }}-\mathbf{B}_{\text {below }}=\mu_{0} \mathbf{K} \times \widehat{\mathbf{n}}
$$

Magnetostatic Boundary Conditions (Consequences of the fundamental laws):

How does the magnetic potential (A) change across a boundary containing surface current \mathbf{K} ?

1. Normal component of \mathbf{A} is continuous

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \mathbf{A}=0 \longleftrightarrow \oint_{\text {surf }} \mathbf{A} \cdot d \mathbf{a}=0 \\
A^{\perp} \text { above }=A^{\perp} \text { below }
\end{gathered}
$$

2. Parallel component of \mathbf{A} is continuous

$$
\begin{gathered}
\boldsymbol{\nabla} \times \mathbf{A}=\mathbf{B} \longleftrightarrow \oint_{\text {path }} \mathbf{A} \cdot d \mathbf{l}=\int \mathbf{B} \cdot d \mathbf{a}=0 \\
A^{\mathrm{ll}}{ }_{\text {above }}=A_{\text {below }}
\end{gathered}
$$

Multipole Expansion of the Vector Potential

Using the cosine rule,

$$
\begin{aligned}
& r^{2}=r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \alpha \\
& r^{2}=r^{2}\left[1+\left(\frac{r^{\prime}}{r}\right)^{2}-2\left(\frac{r^{\prime}}{r}\right) \cos \alpha\right] \\
& \frac{1}{r}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{n} P_{n}(\cos \alpha) \\
& \mathbf{A}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \oint \frac{d \mathbf{l}^{\prime}}{r} \\
& =\frac{\mu_{0} I}{4 \pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint\left(r^{\prime}\right)^{n} P_{n}(\cos \alpha) d \mathbf{l}^{\prime} \\
& =\frac{\mu_{0} I}{4 \pi} \frac{1}{r} \oint d \mathbf{l}^{\prime}+\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \oint r^{\prime} \cos \alpha d \mathbf{l}^{\prime}+\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{3}} \oint\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos \alpha-\frac{1}{2}\right) d \mathbf{l}^{\prime}+\cdots \\
& \text { Monopole potential } \\
& \text { (} 1 / r \text { dependence) } \\
& \text { Dipole potential } \\
& \text { (} 1 / r^{2} \text { dependence) } \\
& \text { Source coordinates: }\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right) \\
& \text { Observation point coordinates: }(r, \theta, \phi) \\
& \text { Angle between } \mathbf{r} \text { and } \mathbf{r}^{\prime}: \alpha
\end{aligned}
$$

Multipole Expansion of the Vector Potential

Monopole potential

$$
\mathbf{A}_{\text {mono }}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \frac{1}{r} \oint d \mathbf{l}^{\prime}=0
$$

Dipole potential

$\mathbf{A}_{\mathrm{dip}}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \oint r^{\prime} \cos \alpha d \mathbf{l}^{\prime}=\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \oint\left(\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime}\right) d \mathbf{l}^{\prime}$
$\begin{aligned} & \text { Stokes } \\ & \text { Theorem: }\end{aligned} \int_{\text {Surf }}(\boldsymbol{\nabla} \times \mathbf{V}) \cdot d \mathbf{a}=\oint_{\text {Path }} \mathbf{V} \cdot d \mathbf{l}$
Using Stokes's theorem for a vector \mathbf{V} that can be written as $\mathbf{V}=\mathbf{c} T$, where \mathbf{c} is a constant vector

$$
\begin{gathered}
\int_{\text {Surf }}(\boldsymbol{\nabla} \times \mathbf{c} T) \cdot d \mathbf{a}=\oint_{\text {Path }} \mathbf{c} T \cdot d \mathbf{l} \quad \text { Angle between } \mathbf{r} \text { and } \mathbf{r}^{\prime}: \alpha \\
\int_{\text {Surf }} T(\boldsymbol{\nabla} \times \mathbf{c}) \cdot d \mathbf{a}-\int_{\text {Surf }}(\mathbf{c} \times \nabla T) \cdot d \mathbf{a}=\mathbf{c} \cdot \oint_{\text {Path }} T d \mathbf{l} \\
\text { Or, }-\int_{\text {Surf }}(\mathbf{c} \times \nabla T) \cdot d \mathbf{a}=\mathbf{c} \cdot \oint_{\text {Path }} T d \mathbf{l} \text { Or, }-\mathbf{c} \cdot \int_{\text {Surf }} \boldsymbol{\nabla} T \times d \mathbf{a}=\mathbf{c} \cdot \oint_{\text {Path }} T d \mathbf{l}
\end{gathered}
$$

Source coordinates: ($r^{\prime}, \theta^{\prime}, \phi^{\prime}$)
Observation point coordinates: (r, θ, ϕ)

Therefore, $\quad \oint_{\text {path }} T d \mathbf{l}=-\int_{\text {Surf }} \nabla T \times d \mathbf{a}$

Multipole Expansion of the Vector Potential

Monopole potential

$$
\mathbf{A}_{\text {mono }}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \frac{1}{r} \oint d \mathbf{l}^{\prime}=0
$$

Dipole potential

$$
\mathbf{A}_{\mathrm{dip}}(\mathbf{r})=\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \oint r^{\prime} \cos \alpha d \mathbf{l}^{\prime}=\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \oint\left(\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime}\right) d \mathbf{l}^{\prime}
$$

Corollary of
Source coordinates: $\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$

$$
=-\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \int \nabla^{\prime}\left(\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime}\right) \times d \mathbf{a}^{\prime}
$$

Observation point coordinates: (r, θ, ϕ) Angle between \mathbf{r} and $\mathbf{r}^{\prime}: \alpha$

$$
\mathbf{A}_{\text {dip }}(\mathbf{r})=-\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \int \hat{\mathbf{r}} \times d \mathbf{a}^{\prime}=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{2}}\left(I \int d \mathbf{a}^{\prime}\right) \times \hat{\mathbf{r}}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}}
$$

$$
\mathbf{m} \equiv I \int d \mathbf{a}^{\prime}
$$

$\int d \mathbf{a}^{\prime} \cdot$ is the vector area of the loop

Magnetic field due to a magnetic dipole

$$
\mathbf{A}_{\mathrm{dip}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}}
$$

Take $\mathbf{m}=m \hat{\mathbf{z}}$

$$
\mathbf{A}_{\mathrm{dip}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{m \sin \theta}{r^{2}} \widehat{\boldsymbol{\phi}}
$$

$$
\begin{aligned}
\mathbf{B}_{\mathrm{dip}}(\mathbf{r}) & =\boldsymbol{\nabla} \times \mathbf{A}_{\mathrm{dip}}(\mathbf{r}) \\
& =\frac{\mu_{0}}{4 \pi} \frac{m \sin \theta}{r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \widehat{\boldsymbol{\theta}})
\end{aligned}
$$

Source coordinates: ($r^{\prime}, \theta^{\prime}, \phi^{\prime}$)
Observation point coordinates: (r, θ, ϕ) Angle between \mathbf{r} and $\mathbf{r}^{\prime}: \alpha$

$$
\begin{aligned}
& \text { Recall } \\
& \mathbf{p}=p \hat{\mathbf{z}} \\
& \mathbf{E}_{\mathrm{dip}}(\mathbf{r})=\frac{p}{4 \pi \epsilon_{0} r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})
\end{aligned}
$$

