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Summary of Lecture # 18: 

• The curl of a magnetic field: The Ampere’s Law 

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 �𝐁𝐁 ⋅ 𝑑𝑑𝐥𝐥 = 𝜇𝜇0𝐼𝐼enc 
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𝛁𝛁 ⋅ 𝐁𝐁 𝐫𝐫 = 0 

• The divergence of a magnetic field is zero. 

𝛁𝛁 ⋅ 𝐁𝐁 = 0  ⇒ 𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀 

• Magnetic Vector Potential  



Vector Potential (From Lecture # 4): 

  
(1) ∫𝐅𝐅 ⋅ d𝐚𝐚  is independent of surface. 
 
(2)  ∮𝐅𝐅 ⋅ d𝐚𝐚 = 0 for any closed surface. 
 
 

This is because of the divergence theorem 

� 𝛁𝛁 ⋅ 𝐅𝐅 𝑑𝑑𝑑𝑑 = � 𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

• This is because divergence of a curl is always zero  𝛁𝛁 ⋅ 𝛁𝛁 × 𝐀𝐀 = 0      

If the divergence of a vector field 𝐅𝐅  is zero everywhere,(𝛁𝛁 ⋅ 𝐅𝐅 = 0), then: 

(3) 𝐅𝐅 is the curl of a vector function: 𝐅𝐅 = 𝛁𝛁 × 𝐀𝐀 
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• The vector potential is not unique. A gradient 𝛁𝛁𝑉𝑉 of a scalar 
function can be added to 𝐀𝐀 without affecting the curl, since the curl 
of a gradient is zero.  



Magnetic Vector Potential 

𝛁𝛁 ⋅ 𝐁𝐁 = 0  ⇒ 𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀 • 𝐀𝐀 is the Magnetic Vector Potential 

What happens to the Ampere’s Law ? 
𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 𝛁𝛁 × 𝛁𝛁 × 𝐀𝐀 = 𝜇𝜇0𝐉𝐉 

𝛁𝛁 𝛁𝛁 ⋅ 𝐀𝐀 − 𝛁𝛁𝟐𝟐𝐀𝐀 = 𝜇𝜇0𝐉𝐉 

• A gradient 𝛁𝛁𝜆𝜆 of a scalar function can be added 
to 𝐀𝐀 without affecting the magnetic field.  

• This is not in a very nice form.  
• Ampere’s law in terms of 𝐁𝐁 seems better  

• This can be done since we know that a 𝛁𝛁𝜆𝜆 can be added to 𝐀𝐀 without changing 𝐁𝐁 

 ⇒ 

 ⇒ 
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Suppose we start with 𝐀𝐀0,  

𝛁𝛁 𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎 − 𝛁𝛁𝟐𝟐𝐀𝐀𝟎𝟎 = 𝜇𝜇0𝐉𝐉 

Re-define by adding 𝛁𝛁𝜆𝜆: 𝐀𝐀𝟎𝟎 + 𝛁𝛁𝜆𝜆 such that 𝛁𝛁 ⋅ 𝐀𝐀 = 𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎 + 𝛁𝛁𝟐𝟐𝜆𝜆 = 0 

Then  −𝛁𝛁𝟐𝟐𝐀𝐀 = 𝜇𝜇0𝐉𝐉 

 ⇒ 

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 𝛁𝛁 𝛁𝛁 ⋅ 𝐀𝐀 − 𝛁𝛁𝟐𝟐𝐀𝐀 = 𝜇𝜇0𝐉𝐉  ⇒  ⇒ 

Then,  

• However, if we can ensure that 𝛁𝛁 ⋅ 𝐀𝐀 = 0, we can have it in a nice form. 

such that,  𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀0 

≡ 𝐀𝐀 

but, 𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎 ≠ 𝟎𝟎. 

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 



Magnetic Vector Potential 
What is the requirement on 𝜆𝜆 that 𝛁𝛁 ⋅ 𝐀𝐀 = 0 ?? 

𝛁𝛁𝟐𝟐𝜆𝜆 = −𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎 

For a given 𝐀𝐀𝟎𝟎 the gradient 𝜆𝜆 should 
be such that  Recall:  𝛁𝛁𝟐𝟐𝑉𝑉 = −

𝜌𝜌
𝜖𝜖0

 

 The solution is:  V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝜌𝜌 𝐫𝐫′  

r 𝑑𝑑𝑑𝑑𝑑 

If the localized charge distribution 
𝜌𝜌 𝐫𝐫′ → 𝟎𝟎, when 𝐫𝐫 → ∞ . 

  The solution is:  𝜆𝜆(𝐫𝐫) =
1
4𝜋𝜋

�
𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎 

r 𝑑𝑑𝑑𝑑𝑑 

If 𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎  → 𝟎𝟎, when 𝐫𝐫 → ∞ . 

(Poisson’s Equation) 
(Poisson’s Equation) 
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Or, 𝛁𝛁 ⋅ 𝐀𝐀𝟎𝟎 + 𝛁𝛁𝟐𝟐𝜆𝜆 = 0?? 

𝐀𝐀(𝐫𝐫) =
𝜇𝜇0
4𝜋𝜋

�
𝐉𝐉(𝐫𝐫𝑑) 

r 𝑑𝑑𝑑𝑑𝑑 So, This is simpler than Biot-Savart Law. 

It is three Poisson’s Equations −𝛁𝛁𝟐𝟐𝐀𝐀 = 𝜇𝜇0𝐉𝐉 
Thus, one can always redefine the vector potential such that 𝛁𝛁 ⋅ 𝐀𝐀 = 0  
So, the Ampere’s law can be written as 

For surface current: 𝐀𝐀(𝐫𝐫) =
𝜇𝜇0
4𝜋𝜋

�
𝐊𝐊(𝐫𝐫𝑑) 

r 𝑑𝑑𝑎𝑎𝑑 

For line current: 𝐀𝐀(𝐫𝐫) =
𝜇𝜇0
4𝜋𝜋

𝐼𝐼 �
𝑑𝑑𝐥𝐥𝑑
r  
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Summary: 

𝐉𝐉 

𝐀𝐀 𝐁𝐁 
𝐁𝐁 = 𝛁𝛁 × 𝐀𝐀;   𝛁𝛁 ⋅ 𝐀𝐀 = 𝟎𝟎  

Magnetostatics 



Magnetostatic Boundary Conditions (Consequences of the fundamental laws): 

1. Normal component of 𝐁𝐁 is continuous 

𝛁𝛁 ⋅ 𝐁𝐁 = 0 � 𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
= 0 

 𝐁𝐁above𝐴𝐴 − 𝐁𝐁below𝐴𝐴 + 0 + 0 + 0 + 0 = 0 

 𝐵𝐵above= 𝐵𝐵below 

2. Parallel component of 𝐁𝐁 is Discontinuous 

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 � 𝐁𝐁 ⋅ 𝑑𝑑𝐥𝐥
 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎
= 𝜇𝜇0𝐈𝐈enc 

𝐁𝐁above 𝑙𝑙 − 𝐁𝐁below𝑙𝑙 + 0 + 0 = 𝜇𝜇0𝐾𝐾𝑙𝑙 

𝐵𝐵above  − 𝐵𝐵below = 𝜇𝜇0𝐾𝐾 

 (𝐵𝐵above−𝐵𝐵

below

)𝐧𝐧� + (𝐵𝐵above − 𝐵𝐵
below

)𝐧𝐧� = 𝜇𝜇0𝐊𝐊 × 𝐧𝐧� 

 𝐁𝐁above− 𝐁𝐁below= 𝜇𝜇0𝐊𝐊 × 𝐧𝐧� 

How does magnetic field (𝐁𝐁)  change across a boundary containing surface current 𝐊𝐊? 
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How does the magnetic potential (𝐀𝐀) change across a boundary containing surface 
current 𝐊𝐊? 
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1. Normal component of 𝐀𝐀 is continuous 

2. Parallel component of 𝐀𝐀 is continuous 

𝛁𝛁 ⋅ 𝐀𝐀 = 0 � 𝐀𝐀 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
= 0 

 𝐴𝐴above= 𝐴𝐴below 

𝛁𝛁 × 𝐀𝐀 = 𝐁𝐁 � 𝐀𝐀 ⋅ 𝑑𝑑𝐥𝐥
 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎
 

𝐴𝐴above = 𝐴𝐴below 

= 0 = �𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚 

Magnetostatic Boundary Conditions (Consequences of the fundamental laws): 



Multipole Expansion of the Vector Potential 
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Source coordinates: (𝑟𝑟′,𝜃𝜃′,𝜙𝜙′)  
Observation point coordinates: (𝑟𝑟,𝜃𝜃,𝜙𝜙)  
Angle between 𝐫𝐫 and 𝐫𝐫𝑑: 𝛼𝛼 

Using the cosine rule, 
r2 = 𝑟𝑟2 + 𝑟𝑟𝑑2 − 2𝑟𝑟𝑟𝑟𝑑cos𝛼𝛼 

r2 = 𝑟𝑟2 1 +
𝑟𝑟′

𝑟𝑟

2

− 2
𝑟𝑟′

𝑟𝑟
cos𝛼𝛼  

1
r

=
1
𝑟𝑟
�

𝑟𝑟′

𝑟𝑟

𝑛𝑛∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛(cos𝛼𝛼) 

𝐀𝐀(𝐫𝐫) =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

�
𝑑𝑑𝐥𝐥𝑑
r  

=
𝜇𝜇0𝐼𝐼
4𝜋𝜋

�
1

𝑟𝑟𝑛𝑛+1
� 𝑟𝑟𝑑 𝑛𝑛

 ∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛(cos𝛼𝛼)𝑑𝑑𝐥𝐥𝑑 

=
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟
�𝑑𝑑𝐥𝐥𝑑 +

𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
� 𝑟𝑟′ cos𝛼𝛼 𝑑𝑑𝐥𝐥𝑑 +

𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟3
� 𝑟𝑟𝑑 2  

3
2

cos𝛼𝛼 −
1
2

𝑑𝑑𝐥𝐥𝑑 + ⋯ 

Monopole potential 
( 1/𝑟𝑟 dependence) 

Dipole potential 
( 1/𝑟𝑟2 dependence) 

Quadrupole potential 
( 1/𝑟𝑟3 dependence) 



Multipole Expansion of the Vector Potential 

Source coordinates: (𝑟𝑟′,𝜃𝜃′,𝜙𝜙′)  
Observation point coordinates: (𝑟𝑟,𝜃𝜃,𝜙𝜙)  
Angle between 𝐫𝐫 and 𝐫𝐫𝑑: 𝛼𝛼 

𝐀𝐀mono 𝐫𝐫 =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟
�𝑑𝑑𝐥𝐥′ 

Monopole potential 

𝐀𝐀dip 𝐫𝐫 =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
�𝑟𝑟′ cos𝛼𝛼 𝑑𝑑𝐥𝐥𝑑 

� 𝑇𝑇𝑑𝑑𝐥𝐥 = −� 𝛁𝛁𝑇𝑇 × 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢

 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎
 

Stokes  
Theorem:  

Dipole potential 
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= 0 

=
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
�(𝐫𝐫� ⋅ 𝐫𝐫𝑑)𝑑𝑑𝐥𝐥𝑑 

� 𝛁𝛁 × 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

Using Stokes’s theorem for a vector 𝐕𝐕 that can be 
written as 𝐕𝐕 = 𝐜𝐜𝑇𝑇, where 𝐜𝐜 is a constant vector 

� 𝛁𝛁 × 𝐜𝐜𝑇𝑇 ⋅ 𝑑𝑑𝐚𝐚 = � 𝐜𝐜𝑇𝑇 ⋅ 𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

� 𝑇𝑇 𝛁𝛁 × 𝐜𝐜 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
− � 𝐜𝐜 × 𝛁𝛁𝑇𝑇 ⋅ 𝑑𝑑𝐚𝐚 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

−� 𝐜𝐜 × 𝛁𝛁𝑇𝑇 ⋅ 𝑑𝑑𝐚𝐚 = 𝐜𝐜 ⋅ � 𝑇𝑇𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

= 𝐜𝐜 ⋅ � 𝑇𝑇𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

−𝐜𝐜 ⋅ � 𝛁𝛁𝑇𝑇 × 𝑑𝑑𝐚𝐚 = 𝐜𝐜 ⋅ � 𝑇𝑇𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
  Or, 

 Therefore, 

 Or, 



Multipole Expansion of the Vector Potential 

Source coordinates: (𝑟𝑟′,𝜃𝜃′,𝜙𝜙′)  
Observation point coordinates: (𝑟𝑟,𝜃𝜃,𝜙𝜙)  
Angle between 𝐫𝐫 and 𝐫𝐫𝑑: 𝛼𝛼 

𝐀𝐀mono 𝐫𝐫 =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟
�𝑑𝑑𝐥𝐥′ 

Monopole potential 

𝐀𝐀dip 𝐫𝐫 =
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
�𝑟𝑟′ cos𝛼𝛼 𝑑𝑑𝐥𝐥𝑑 

𝐀𝐀dip 𝐫𝐫 = −
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
�𝐫𝐫� × 𝑑𝑑𝐚𝐚𝑑 =

𝜇𝜇0
4𝜋𝜋

1
𝑟𝑟2

𝐼𝐼 �𝑑𝑑𝐚𝐚′ × 𝐫𝐫� =
𝜇𝜇0
4𝜋𝜋

𝐦𝐦 × 𝐫𝐫�
𝑟𝑟2

 

𝐦𝐦 ≡ 𝐼𝐼�𝑑𝑑𝐚𝐚′ 

Magnetic dipole moment 

� 𝑇𝑇𝑑𝑑𝐥𝐥 = −� 𝛁𝛁𝑇𝑇 × 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢

 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎
 

Corollary of  
Stokes Theorem:  

= −
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
�𝛁𝛁𝑑(𝐫𝐫� ⋅ 𝐫𝐫𝑑) × 𝑑𝑑𝐚𝐚𝑑 

�𝑑𝑑𝐚𝐚′ • is the vector area of the loop 
• is the scalar area if the loop is flat 

Dipole potential 

12 

= 0 

=
𝜇𝜇0𝐼𝐼
4𝜋𝜋

1
𝑟𝑟2
�(𝐫𝐫� ⋅ 𝐫𝐫𝑑)𝑑𝑑𝐥𝐥𝑑 



Magnetic field due to a magnetic dipole  

Source coordinates: (𝑟𝑟′,𝜃𝜃′,𝜙𝜙′)  
Observation point coordinates: (𝑟𝑟,𝜃𝜃,𝜙𝜙)  
Angle between 𝐫𝐫 and 𝐫𝐫𝑑: 𝛼𝛼 

𝐀𝐀dip 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

𝐦𝐦 × 𝐫𝐫�
𝑟𝑟2

 

𝐦𝐦 = 𝑚𝑚 𝐳𝐳� Take 

𝐀𝐀dip 𝐫𝐫 =
𝜇𝜇0
4𝜋𝜋

𝑚𝑚 sin𝜃𝜃
𝑟𝑟2

𝝓𝝓�  

𝐁𝐁dip 𝐫𝐫 = 𝛁𝛁 × 𝐀𝐀dip 𝐫𝐫  

=
𝜇𝜇0
4𝜋𝜋

𝑚𝑚 sin𝜃𝜃
𝑟𝑟3

2cos𝜃𝜃 𝐫𝐫�  + sin𝜃𝜃 𝜽𝜽�  

Recall 
𝐩𝐩 = 𝑝𝑝𝐳𝐳� 

𝐄𝐄dip 𝐫𝐫 =
𝑝𝑝

4𝜋𝜋𝜖𝜖0𝑟𝑟3
(2cos𝜃𝜃 𝐫𝐫� + sin𝜃𝜃 �̂�𝜃) 
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