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Notes 
• The Solutions to HW # 1 have been posted. 

 
 

• Course Webpage:  http://home.iitk.ac.in/~akjha/PHY103.htm 

• Office Hour –  Friday 2:30-3:30 pm 

• HW # 2 has also been posted. 

• I am assuming that everyone has been receiving the 
course emails. 

http://home.iitk.ac.in/%7Eakjha/PHY103.htm


• The fundamental Theorem  
for derivative: 

• The fundamental Theorem  
for Gradient: � 𝛻𝛻𝑇𝑇 ⋅ 𝑑𝑑𝐥𝐥 = 𝑇𝑇 𝑏𝑏 − 𝑇𝑇(𝑎𝑎) 

𝑏𝑏

           𝑎𝑎  𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 

• The fundamental Theorem  
for Divergence 

� 𝛻𝛻 ⋅ 𝐕𝐕 𝑑𝑑𝑑𝑑 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

� 𝛻𝛻 × 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 • The fundamental Theorem  

for Curl 
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�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 = 𝑓𝑓 𝑏𝑏 − 𝑓𝑓(𝑎𝑎) 
𝑏𝑏

𝑎𝑎

 

(Gauss’s theorem): 

(Stokes’ theorem): 

Summary of Lecture # 3: 

• Line integral, surface integral, and volume integral 

• Coordinate systems: Spherical polar, and cylindrical 



Dirac Delta function: 

• Dirac delta function is a special function, which is defined as: 

𝛿𝛿 𝑥𝑥 = 0,  𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 0  
           = ∞,        𝑖𝑖𝑖𝑖 𝑥𝑥 = 0 � 𝛿𝛿 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

∞

−∞
 

𝛿𝛿 𝑥𝑥  

𝑥𝑥 
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𝛿𝛿 𝑥𝑥 = lim
𝑠𝑠→0

  
1
2𝜋𝜋𝑠𝑠2

exp −
𝑥𝑥 − 𝑎𝑎 2

2𝑠𝑠2
 

• Realization of a Dirac Delta function 

• Example: What is the charge density of a point charge 𝑞𝑞 kept at the origin? 

𝜌𝜌(𝑥𝑥) = 𝑞𝑞𝑞𝑞(𝑥𝑥); � 𝜌𝜌 𝑥𝑥 𝑑𝑑𝑑𝑑 =
∞

−∞
� 𝑞𝑞𝛿𝛿 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑞𝑞
∞

−∞
 



Properties of a Dirac Delta function: 

(4) 3D Dirac delta function is defined as: 
𝛿𝛿3 𝒓𝒓 = 𝛿𝛿 𝑥𝑥 𝛿𝛿 𝑦𝑦 𝛿𝛿 𝑧𝑧  � � � 𝑓𝑓 𝒓𝒓 𝛿𝛿3 𝒓𝒓 − 𝒂𝒂

∞

−∞
 

∞

−∞
= 𝑓𝑓(𝒂𝒂)

∞

−∞
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𝛿𝛿 𝑥𝑥 − 𝑎𝑎 = 0,  𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 0  
                   = ∞,        𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑎𝑎 

(3)  If 𝑓𝑓(𝑥𝑥) is a continuous function of 𝑥𝑥 

� 𝛿𝛿 𝑥𝑥 − 𝑎𝑎 𝑑𝑑𝑑𝑑 = 1
∞

−∞
 

� 𝑓𝑓(𝑥𝑥)𝛿𝛿 𝑥𝑥 − 𝑎𝑎 𝑑𝑑𝑑𝑑 = � 𝑓𝑓(𝑎𝑎)𝛿𝛿 𝑥𝑥 − 𝑎𝑎 𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑎𝑎)
∞

−∞

∞

−∞
 

𝛿𝛿 𝑘𝑘𝑘𝑘 =
1
𝑘𝑘
𝛿𝛿(𝑥𝑥),  (1) 

(2) Dirac delta function centered at 𝑥𝑥 = 𝑎𝑎 is defined as follows 
 



Divergence of the vector field  𝐕𝐕 = r�
r2  

Recall Homework Problem 1.5. The divergence 𝛁𝛁 ⋅  r�
rn = 2−𝑛𝑛

r(n+1). 

So, for 𝐕𝐕 = r�
r2 ,     𝛁𝛁 ⋅ 𝐕𝐕 = 𝛁𝛁 ⋅ r�

r2 = 0
r3 = 0 (except at r=0 where it is 0/0, not defined 

Let’s calculate the divergence using the divergence theorem: 

� 𝛁𝛁 ⋅ 𝐕𝐕 𝑑𝑑𝑑𝑑 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

� 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
= �

r̂
R2 ⋅ 𝑅𝑅2sin𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑r̂ = � sin𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 4𝜋𝜋 

Take the volume integral over a sphere of radius R and the 
surface integral over the surface of a sphere of radius R.   

Therefore,  

� 𝛁𝛁 ⋅ 𝐕𝐕 𝑑𝑑𝑑𝑑 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
= 4𝜋𝜋

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

We find that 𝛁𝛁 ⋅ 𝐕𝐕=0 but its integral over a volume is finite. This is possible only if   

𝛁𝛁 ⋅ 𝐕𝐕 = 𝛁𝛁 ⋅  
r̂
r2

= 4𝜋𝜋 𝛿𝛿(𝐫𝐫) 
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Divergence of the vector field  𝐕𝐕 = r�
r2  

Recall Homework Problem 1.5. The divergence 𝛁𝛁 ⋅  r�
rn = 2−𝑛𝑛

r(n+1). 

So, for 𝐕𝐕 = r�
r2 ,     𝛁𝛁 ⋅ 𝐕𝐕 = 𝛁𝛁 ⋅ r�

r2 = 0
r3 = 0 (except at r=0 where it is 0/0, not defined) 

 Let’s calculate the divergence using the divergence theorem: 

� 𝛁𝛁 ⋅ 𝐕𝐕 𝑑𝑑𝑑𝑑 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

� 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
= �

r̂
R2 ⋅ 𝑅𝑅2sin𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑r̂ = � sin𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 4𝜋𝜋 

Take the volume integral over a sphere of radius R and the 
surface integral over the surface of a sphere of radius R.   

Therefore,  

� 𝛁𝛁 ⋅ 𝐕𝐕 𝑑𝑑𝑑𝑑 = � 𝐕𝐕 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
= 4𝜋𝜋

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

We find that 𝛁𝛁 ⋅ 𝐕𝐕=0 but its integral over a volume is finite. This is only possible if   

𝛁𝛁 ⋅ 𝐕𝐕 = 𝛁𝛁 ⋅  
r̂
r2

= 4𝜋𝜋 𝛿𝛿(𝐫𝐫) 
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𝛁𝛁 ⋅  
r̂
r2

= 4𝜋𝜋 𝛿𝛿(r) = 4𝜋𝜋 𝛿𝛿(𝐫𝐫 − 𝐫𝐫𝐫) 

𝛁𝛁 ⋅  
r̂
r2

? ? 



A few more essential concepts: 

  
(i) The divergence 𝛁𝛁 ⋅ 𝐅𝐅 is known 
(ii) The curl 𝛁𝛁 × 𝐅𝐅   is known 
(iii) If the field goes to zero at infinity. 
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1. The Helmholtz theorem 

For the proof of this theorem, see Appendix B of Griffiths 

A vector field 𝐅𝐅  in elctrodynamics can be completely determined if: 



2. Scalar Potential: 

  
(1) ∫ 𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥b

a   is independent of path. 
 
(2)  ∮𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥 = 0 for any closed loop. 

This is because of Stokes’ theorem 

� 𝛁𝛁 × 𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚 = � 𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

• This is because Curl of a gradient is zero  𝛁𝛁 × 𝛁𝛁V = 𝟎𝟎 

(3) 𝐅𝐅 is the gradient of a scalar function: 𝐅𝐅 = −𝛁𝛁V   

If the curl of a vector field 𝐅𝐅  is zero, that is, if 𝛁𝛁 × 𝐅𝐅 = 0 everywhere, then: 
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• The scalar potential not unique. A constant can be added to 
V without affecting the gradient: 𝛁𝛁V= 𝛁𝛁(V + a), since the 
gradient of a constant is zero. 

• The minus sign is purely conventional. 

A few more essential concepts: 



3. Vector Potential: 

  
(1) ∫𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚  is independent of surface. 
 
(2)  ∮𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚 = 0 for any closed surface. 
 
 

This is because of the divergence theorem 

� 𝛁𝛁 ⋅ 𝐅𝐅 𝑑𝑑𝑑𝑑 = � 𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

• This is because divergence of a curl is zero  𝛁𝛁 ⋅ 𝛁𝛁 × 𝐀𝐀 = 0      

If the divergence of a vector field 𝐅𝐅  is zero, that is, if 𝛁𝛁 ⋅ 𝐅𝐅 = 0 everywhere, then: 

(3) 𝐅𝐅 is the gradient of a vector function: 𝐅𝐅 = 𝛁𝛁 × 𝐀𝐀   
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• The vector potential is not unique. A gradient 𝛁𝛁V of a scalar 
function can be added to 𝐀𝐀 without affecting the curl, since 
the curl of a gradient is zero.  

A few more essential concepts: 



Electric Field 

Force on a test charge 𝑄𝑄 due to a single point charge 𝑞𝑞 is: 

𝐅𝐅 =
1

4𝜋𝜋𝜖𝜖0
 
𝑞𝑞 𝑄𝑄
r2

 r̂ 

𝜖𝜖0 = 8.85 × 10−12
C2

N ⋅ m2 
Permittivity  
of free space 

Force on a test charge Q due to a collection of  point charges is: 

𝐅𝐅 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
 
𝑞𝑞1 𝑄𝑄
r1

2  r1 � +
𝑞𝑞2 𝑄𝑄
r2

2 
r2 � +

𝑞𝑞3 𝑄𝑄
r3

2 
r3 � + ⋯  

(in the units of Newton) 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
 
𝑞𝑞1
r1

2  r1 � +
𝑞𝑞2
r2

2 
r2 � +

𝑞𝑞3
r3

2 
r3 � + ⋯  

Q: What is field (a vector function), physically?  
 
A: We don’t really know. At this level, field is just a mathematical 
concept which is consistent with the physical theory 
(electrodynamics). Also, we know how to calculate a field. 11 

Coulomb’s Law 

= 𝑄𝑄𝐄𝐄(𝐫𝐫) 



𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r2

 r̂ 

Electric field due to a single point charge 𝑞𝑞 is: 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑑𝑑
r2

 r̂ 

For a line charge 𝑑𝑑𝑑𝑑 = 𝜆𝜆 𝐫𝐫′ 𝑑𝑑𝑑𝑑    
For a surface charge 𝑑𝑑𝑑𝑑 = 𝜎𝜎 𝐫𝐫′ 𝑑𝑑𝑑𝑑 
For a volume charge 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑 

We know how to calculate electric fields due a charge distribution, using Coulomb’s 
law. We’ll now explore some tricks for calculating the field more efficiently. 12 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
 
𝑞𝑞1
r1

2  r1 � +
𝑞𝑞2
r2

2 
r2 � +

𝑞𝑞3
r3

2 
r3 � + ⋯  

Electric field due to a collection of point charges is: 

Electric Field 

Electric field due to a continuous charge distribution is: 



Electric Flux and Gauss’s Law: 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r2

 r̂ 

Electric field 𝐄𝐄(𝐫𝐫) due to a single point charge 𝑞𝑞 at origin is: 

13 

Electric field is a vector field. One way to represent a 
vector field is by drawing a vectors of given magnitude 
and directions. 

 
(i) Field lines emanate from the positive charge and end 

up on the negative charge or go up to infinity. 

Another way to represent a vector field is by drawing 
the field lines: 

(ii) The density is the filed lines is proportional to the 
strength of the field. 



The electric flux is defined as  

Φ𝐸𝐸 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
 

𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚 is proportional the number of field lines 
passing through an area element 𝑑𝑑𝐚𝐚  
 
When the area 𝑑𝑑𝐚𝐚  is perpendicular to the field 𝐄𝐄 
the dot product is zero. 
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Electric Flux and Gauss’s Law: 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r2

 r̂ 

Electric field 𝐄𝐄(𝐫𝐫) due to a single point charge 𝑞𝑞 at origin is: 



The electric flux due to a point charge 𝑞𝑞 at origin through a 
spherical shell of radius R.  

Φ𝐸𝐸 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
= � �

1
4𝜋𝜋𝜖𝜖0

𝑞𝑞
𝑅𝑅2

 r̂
2𝜋𝜋

𝜙𝜙=0

𝜋𝜋

𝜃𝜃=0
⋅ 𝑅𝑅2sin𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃r̂ =

𝑞𝑞
𝜖𝜖0
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Electric Flux and Gauss’s Law: 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r2

 r̂ 

Electric field 𝐄𝐄(𝐫𝐫) due to a single point charge 𝑞𝑞 at origin is: 



The electric flux due to a point charge 𝑞𝑞 at origin through 
any enclosing closed surface is  

Φ𝐸𝐸 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑞𝑞
𝜖𝜖0
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Electric Flux and Gauss’s Law: 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r2

 r̂ 

Electric field 𝐄𝐄(𝐫𝐫) due to a single point charge 𝑞𝑞 at origin is: 



� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑄𝑄enc
𝜖𝜖0

 This is the Gauss’s law in the integral form:  
The flux through a surface is equal to the total 
charge enclosed by the surface divided by 𝜖𝜖0   

17 

The electric flux due to a collection of point charges 
through any enclosing closed surface.  

= �  
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
�𝐄𝐄𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

.𝑑𝑑𝐚𝐚 = �  
𝒏𝒏

𝒊𝒊=𝟏𝟏

�  
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
𝐄𝐄𝒊𝒊.𝑑𝑑𝐚𝐚 = �

𝑞𝑞𝑖𝑖
𝜖𝜖0

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

Electric Flux and Gauss’s Law: 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞
r2

 r̂ 

Electric field 𝐄𝐄(𝐫𝐫) due to a single point charge 𝑞𝑞 at origin is: 

Φ𝐸𝐸 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=? ? 



� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑄𝑄enc
𝜖𝜖0

 

Using divergence 
theorem  

� 𝛁𝛁 ⋅ 𝐄𝐄 𝑑𝑑𝑑𝑑 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 � 𝛁𝛁 ⋅ 𝐄𝐄 𝑑𝑑𝑑𝑑 =

𝑄𝑄enc
𝜖𝜖0

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

𝑄𝑄enc = �𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑
 

 
 � 𝛁𝛁 ⋅ 𝐄𝐄 𝑑𝑑𝑑𝑑 = �

1
𝜖𝜖0
𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑

 

 

 

𝑉𝑉𝑜𝑜𝑜𝑜
 

For a volume 
Charge density 

𝛁𝛁 ⋅ 𝐄𝐄 =
𝜌𝜌 
𝜖𝜖0

 This is the Gauss’s law in differential form 
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Or, 

Or, 

Electric Flux and Gauss’s Law: 

Gauss’s law doesn’t have any information that the Coulomb’s does not contain. The 
importance of Gauss’s law is that it makes calculating electric field much simpler and 
provide a deeper understanding of the field itself. 

This is the Gauss’s law in integral form. 



� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑄𝑄enc
𝜖𝜖0

 
This is the Gauss’s law in integral form. 

Q: (Griffiths: Ex 2.10): What is the flux through the shaded face of the cube due to the 
charge 𝑞𝑞 at the corner    

Answer:  

� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=

1
24

 
𝑞𝑞
𝜖𝜖0

 
19 

Electric Flux and Gauss’s Law: 

� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 ? ?  

24� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑞𝑞
𝜖𝜖0
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