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Summary of Lecture # 4: 

2 

• Gauss’s Law 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑑𝑑
r2

 r̂ 

Φ𝐸𝐸 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
 

𝛁𝛁 ⋅ 𝐄𝐄 =
𝜌𝜌 
𝜖𝜖0

 

• Scalar Potential : if 𝛁𝛁 × 𝐅𝐅 = 0 everywhere, 𝐅𝐅 = −𝛁𝛁V  

• Vector Potential : if 𝛁𝛁 ⋅ 𝐅𝐅 = 0 everywhere, 𝐅𝐅 = 𝛁𝛁 × 𝐀𝐀 

• Coulomb’s Law:  

• Electric Flux  

� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑄𝑄enc
𝜖𝜖0

 (in integral form) 

(in differential form) 



� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑄𝑄enc
𝜖𝜖0

 
This is the Gauss’s law in integral form. 

Q: (Griffiths: Ex 2.10): What is the flux through the shaded face of the cube due to the 
charge 𝑑𝑑 at the corner    

Answer:  

� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=

1
24

 
𝑑𝑑
𝜖𝜖0
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Correction in Lecture # 4: 

� 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚 ? ?
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
 

24 � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑑𝑑
𝜖𝜖0

 



Gauss’s Law from Coulomb’s Law: 
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𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�

r̂
r2

 𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑 

Coulomb’s law gives the electric field 
due to a volume charge 𝜌𝜌 𝐫𝐫′    

If Coulomb’s Law and Gauss’s law have the same information 
content, can we derive Gauss’s law from Coulomb’s law?  

Take the divergence of both sides of the equation 

𝛁𝛁 ⋅ 𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�𝛁𝛁 ⋅

r̂
r2

𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑 

We have:  𝛁𝛁 ⋅  
r̂
r2

= 4𝜋𝜋 𝛿𝛿(r) = 4𝜋𝜋 𝛿𝛿(𝐫𝐫 − 𝐫𝐫𝐫) 

𝛁𝛁 ⋅ 𝐄𝐄 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
� 4𝜋𝜋 𝛿𝛿 𝐫𝐫 − 𝐫𝐫′  𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑 Therefore,  

𝛁𝛁 ⋅ 𝐄𝐄 =
𝜌𝜌 
𝜖𝜖0

 
The divergence of electric field is equal 
to the charge density divided by 𝜖𝜖0 

=
𝜌𝜌(𝐫𝐫) 
𝜖𝜖0

 



Curl of the Electric Field: 

5 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑑𝑑
r2

r̂ 

Electric field due to a single point charge 𝑑𝑑 is: 

Let’s take the simplest electric field: 

We need to find the curl of it 

𝛁𝛁 × 𝐄𝐄 𝐫𝐫 =
𝑑𝑑

4𝜋𝜋𝜖𝜖0
𝛁𝛁 ×

1
r2

r̂  

Take the area integral 

� 𝛁𝛁 × 𝐄𝐄 𝐫𝐫 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=

𝑑𝑑
4𝜋𝜋𝜖𝜖0

� 𝛁𝛁 ×
1
r2

r̂ ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
 

� 𝛁𝛁 × 𝐄𝐄 𝐫𝐫 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=

𝑑𝑑
4𝜋𝜋𝜖𝜖0

�
1
r2

r̂ ⋅ 𝑑𝑑𝐥𝐥 

Use Stokes’s theorem 

� 𝛁𝛁 × 𝐄𝐄 𝐫𝐫 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=     

=
𝑑𝑑

4𝜋𝜋𝜖𝜖0
�

1
r2
𝑑𝑑𝑑𝑑 

since  
𝑑𝑑𝐥𝐥 = 𝑑𝑑𝑑𝑑𝒓𝒓� + 𝑑𝑑𝑑𝑑𝑟𝑟𝜽𝜽� 

                             +𝑑𝑑sin𝑟𝑟𝑑𝑑𝜃𝜃𝝓𝝓�  

implies 𝛁𝛁 × 𝐄𝐄 = 𝟎𝟎 = 0 
𝑑𝑑

4𝜋𝜋𝜖𝜖0
×

1
𝑑𝑑
�
𝑢𝑢𝑎𝑎

𝑢𝑢𝑎𝑎
 



Curl of the Electric Field (Digression): 
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𝛁𝛁 × 𝐄𝐄 = 𝟎𝟎 
Curl of an electric field is zero. We have shown this for the 
simplest field, which is the field of a point charge. But it can be 
shown to be true for any electric field, as long as the field is static.   

What if the field is dynamic, that is, what if 
the field changes as a function of time? 

𝛁𝛁 × 𝐄𝐄 = −
𝑑𝑑𝐁𝐁
𝑑𝑑𝑑𝑑

 Faraday’s Law in differential 
form. 

Integrate over a surface 

� 𝛁𝛁 × 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝒔𝒔𝒖𝒖𝒓𝒓𝒖𝒖
= � −

𝑑𝑑𝐁𝐁
𝑑𝑑𝑑𝑑

⋅ 𝑑𝑑𝐚𝐚
 

𝒔𝒔𝒖𝒖𝒓𝒓𝒖𝒖
 

Apply Stokes’ theorem 

� 𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎
= −

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚

 

𝒔𝒔𝒖𝒖𝒓𝒓𝒖𝒖
 

E = −
𝑑𝑑Φ
𝑑𝑑𝑑𝑑

 
EMF 

Magnetic flux Faraday’s Law in integral form. 



Maxwell’s Equations (Digression 2): 
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𝛁𝛁 × 𝐄𝐄 = −
𝑑𝑑𝐁𝐁
𝑑𝑑𝑑𝑑

 � 𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎
= −

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝐁𝐁 ⋅ 𝑑𝑑𝐚𝐚

 

𝒔𝒔𝒖𝒖𝒓𝒓𝒖𝒖
 

𝛁𝛁 ⋅ 𝐄𝐄 =
𝜌𝜌 
𝜖𝜖0

 � 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚
 

𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
=
𝑄𝑄enc
𝜖𝜖0

 

𝛁𝛁 ⋅ 𝐁𝐁 = 0 

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝐉𝐉 − 𝜇𝜇0𝜖𝜖0
𝑑𝑑𝐄𝐄
𝑑𝑑𝑑𝑑

 

Gauss’s Law 

Faraday’s Law 

Amperes’s Law with 
Maxwell’s correction 

No name; Magnetic  
Monopole does not exist 

When fields do not vary as a function of time, it is called Electrostatics / 
Magnetostatics. (before mid-sem) 
 When fields do vary as a function of time, then the two fields have to be studied 
together as an electromagnetic field, and one consequence of a changing electric 
and magnetic field is the electromagnetic radiation. (after mid-sem) 
 When the energy of the field is quantized (photons) then it is called quantum 
electrodynamics. (Not for this course). Applications: Quantum computers, Quantum 
cryptography, Quantum teleportation  
 



Electric Potential: 

  
(1) ∫ 𝐅𝐅 ⋅ d𝐥𝐥b

a   is independent of path. 
 
(2)  ∮𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥 = 0 for any closed loop. 

This is because of Stokes’ theorem 

� 𝛁𝛁 × 𝐅𝐅 ⋅ 𝑑𝑑𝐚𝐚 = � 𝐅𝐅 ⋅ 𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

• This is because Curl of a gradient is zero  𝛁𝛁 × 𝛁𝛁V = 𝟎𝟎 
(3) 𝐅𝐅 is the gradient of a scalar function: 𝐅𝐅 = −𝛁𝛁V   

If the curl of a vector field 𝐅𝐅  is zero, that is, if 𝛁𝛁 × 𝐅𝐅 = 0 everywhere, then: 

8 

Recall: 

  
(1) ∫ 𝐄𝐄 ⋅ d𝐥𝐥b

a   is independent of path. 
 
(2)  ∮𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥 = 0 for any closed loop. 

This is because of Stokes’ theorem 

� 𝛁𝛁 × 𝐄𝐄 ⋅ 𝑑𝑑𝐚𝐚 = � 𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎
 

 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢
 

(3) 𝐄𝐄 is the gradient of a scalar function: 

The curl of  Electric field 𝐄𝐄  is zero, that is,𝛁𝛁 × 𝐄𝐄 = 0 everywhere. Therefore: 

V  is called the electric potential. It is a scalar quantity, 
the gradient of which is equal to the electric field 

𝐄𝐄 = −𝛁𝛁V  



Electric Potential: 

9 

Use the fundamental Theorem for Gradient: 

How to write electric potential in terms of the electric field? 

−𝛁𝛁V = 𝐄𝐄  

Take the line integral of the above equation over a path 

�𝛁𝛁V ⋅ 𝑑𝑑𝐥𝐥
𝒃𝒃

𝒂𝒂

= −�𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
𝒃𝒃

𝒂𝒂

 

V 𝐛𝐛 − V(𝐚𝐚) = −�𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
𝒃𝒃

𝒂𝒂

 

� 𝛁𝛁V ⋅ 𝑑𝑑𝐥𝐥 = V 𝑏𝑏 − V(𝑎𝑎) 
𝒃𝒃

           𝒂𝒂  𝑃𝑃𝑎𝑎𝑎𝑎𝑎

 

• Absolute potential cannot be defined. 
• Only potential differences can be defined. 

Since 𝛁𝛁 × 𝐄𝐄 = 0 everywhere, 𝐄𝐄 = −𝛁𝛁V  



Electric Potential: 

10 

(5)   V 𝐛𝐛 − V(𝐚𝐚) = −∫ 𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥𝒃𝒃
𝒂𝒂 . Absolute potential cannot be defined. In 

electrostatics, usually one takes the reference point to infinity and set the 
potential at infinity to zero, that is, take V 𝐚𝐚 = V ∞ = 0. Also if V 𝐛𝐛 = V(𝐫𝐫),  
 

V 𝐫𝐫 = − �𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
𝐫𝐫

∞

 

(1) Electric potential is different from electric potential energy. Unit of electric 
potential is Newton-meter per Coulomb ( N⋅m

C
 ) or Volt. 

(2) The potential obeys superposition principle, i.e., the potential due to several 
charges is equal to the sum of the potentials due to individual ones: V = V1 + V2 + ⋯ 

(4) The electric field is  a vector quantity, but we still get all the information from 
the potential (a scalar quantity). This is because different components are 
interrelated: 𝛁𝛁 × 𝐄𝐄 = 0, i.e., 𝜕𝜕Ex

𝜕𝜕𝜕
= 𝜕𝜕Ey

𝜕𝜕𝜕
;      𝜕𝜕Ez

𝜕𝜕𝜕
= 𝜕𝜕Ey

𝜕𝜕𝜕
;       𝜕𝜕Ex

𝜕𝜕𝜕
= 𝜕𝜕Ez

𝜕𝜕𝜕
; 

(3) If one knows the electrical potential (a scalar quantity), the electric field (a 
vector quantity) can be calculated  



Electric Potential due to a point charge at origin: 
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𝐄𝐄(𝐫𝐫𝟏𝟏) =
1

4𝜋𝜋𝜖𝜖0
𝑑𝑑
𝑑𝑑12

 𝐫𝐫𝟏𝟏�  

Electric field 𝐄𝐄(𝐫𝐫𝟏𝟏) at  𝐫𝐫𝟏𝟏 due to 
a single point charge 𝑑𝑑 at origin: 

V 𝐫𝐫 = − �𝐄𝐄 ⋅ 𝑑𝑑𝐥𝐥
𝑢𝑢

∞

 

Electric potential V 𝐫𝐫  at 𝐫𝐫  due to a 
single point charge 𝑑𝑑 at origin: 

The line element is:  𝑑𝑑𝐥𝐥𝟏𝟏 = 𝑑𝑑𝑑𝑑1 r𝟏𝟏� + 𝑑𝑑1𝑑𝑑𝑟𝑟1 𝛉𝛉𝟏𝟏� + 𝑑𝑑1sin𝑟𝑟1𝑑𝑑𝜃𝜃1 𝝓𝝓𝟏𝟏�  

V 𝐫𝐫 = − �
1

4𝜋𝜋𝜖𝜖0
𝑑𝑑
𝑑𝑑12

𝒓𝒓

∞

𝑑𝑑𝑑𝑑1 

V 𝐫𝐫 =
𝑑𝑑

4𝜋𝜋𝜖𝜖0
1
𝑑𝑑

 

= − �𝐄𝐄(𝐫𝐫𝟏𝟏) ⋅ 𝑑𝑑𝐥𝐥𝟏𝟏

𝒓𝒓

∞

 

=
𝑑𝑑

4𝜋𝜋𝜖𝜖0
1
𝑑𝑑

 = −
𝑑𝑑

4𝜋𝜋𝜖𝜖0
�

1
𝑑𝑑12

𝒓𝒓

∞

𝑑𝑑𝑑𝑑1 



Electric Potential due to localized charge distribution: 

V 𝐫𝐫 =
𝑑𝑑

4𝜋𝜋𝜖𝜖0
1
r
 

V 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
�

𝑑𝑑𝑖𝑖
ri

𝑛𝑛

𝑖𝑖=1

 

V 𝐫𝐫 =
𝑑𝑑

4𝜋𝜋𝜖𝜖0
1
𝑑𝑑

 
Potential due to a point 
charge 𝑑𝑑 at origin: 

Potential due to a point 
charge 𝑑𝑑 at 𝐫𝐫𝐫: 

Potential due to a collection 
of point charges 

V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑑𝑑
r   

For a line charge 𝑑𝑑𝑑𝑑 = 𝜆𝜆 𝐫𝐫′ 𝑑𝑑𝑑𝑑𝐫  
For a surface charge 𝑑𝑑𝑑𝑑 = 𝜎𝜎 𝐫𝐫′ 𝑑𝑑𝑎𝑎𝐫 
For a volume charge 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝑑𝑑𝐫 

Potential due to a a continuous 
charge distribution is  

12 



Ease of calculating the Electric Field 

• If the above two is not applicable, one has to go back to the Coulomb’s 
law and then calculate the electric field.  

• The easiest way to calculate the electric field is using Gauss’s law. But 
this is possible only when there is some symmetry in the problem. 

• The next best thing: if the electric potential is known, one can calculate 
the electric field by just taking the gradient of the potential 𝐄𝐄 = −𝛁𝛁V. 
Sometimes, it is very effective to calculate the electric potential first 
and then the electric field from there.  

13 
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