Semester II, 2017-18
Department of Physics, IIT Kanpur

PHY103A: Lecture \# 6

(Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha
15-Jan-2018

Summary of Lecture \# 5:

- Gauss's Law from Coulomb's Law: $\boldsymbol{\nabla} \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}$
- Curl of the electric field : $\boldsymbol{\nabla} \times \mathbf{E}=0$
- Electric Potential: $\quad \mathbf{E}=-\nabla \mathrm{V} \longleftrightarrow \mathrm{V}(\mathbf{b})-\mathrm{V}(\mathbf{a})=-\int_{\boldsymbol{a}}^{\boldsymbol{b}} \mathbf{E} \cdot d \mathbf{l}$

$$
\mathrm{V}(\mathbf{r})=-\int_{\infty}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}
$$

- Electric Potential due to a localized charge distribution

$$
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}
$$

Charge distribution

Charge distribution in terms of electric potential:

Gauss's Law $\boldsymbol{\nabla} \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}$

$$
\text { But } \boldsymbol{\nabla} \times \mathbf{E}=0 \quad \Rightarrow \mathbf{E}=-\boldsymbol{\nabla} V
$$

Therefore, $\boldsymbol{\nabla} \cdot \mathbf{E}=\boldsymbol{\nabla} \cdot(-\boldsymbol{\nabla} \mathrm{V})=-\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \mathrm{V})=-\nabla^{2} \mathrm{~V}=\frac{\rho}{\epsilon_{0}}$

$$
\nabla^{2} \mathrm{~V}=-\frac{\rho}{\epsilon_{0}} \quad \text { Poisson's Equation }
$$

In the region of space where there is no charge, $\rho=0$

$$
\nabla^{2} \mathrm{~V}=0 \quad \text { Laplace's Equation }
$$

Summary:

Electrostatics

Work and Energy in Electrostatics

There is a charge Q in an electrostatic field \mathbf{E}. How much work needs to be done in order to move the charge from point \boldsymbol{a} to \boldsymbol{b} ?

$$
W=\int_{\boldsymbol{a}}^{\boldsymbol{b}} \mathbf{F} \cdot d \mathbf{l}=-Q \int_{\boldsymbol{a}}^{\boldsymbol{b}} \mathbf{E} \cdot d \mathbf{l}=\mathrm{Q}[\mathrm{~V}(\mathbf{b})-\mathrm{V}(\mathbf{a})]
$$

- $\mathbf{F}=-Q \mathbf{E}$ is the force one has to exert in order to counteract the electrostatic force $\mathbf{F}=Q \mathbf{E}$.
- Work done to move a unit charge from point \boldsymbol{a} to \boldsymbol{b} is the potential difference between points \boldsymbol{b} and \boldsymbol{a}
- Work is independent of the path.

Take $V(\mathbf{a})=V(\infty)=0$ and $V(\mathbf{b})=V(\mathbf{r})$

$$
\begin{gathered}
W=\mathrm{QV}(\mathbf{r}) \\
\text { If } \mathrm{Q}=1,
\end{gathered}
$$

$$
W=\mathrm{V}(\mathbf{r})
$$

- Work done to construct a system of unit charge (to bring a unit charge from ∞ to \mathbf{r} is the electric potential.
- Thus, electric potential is the potential energy per unit charge

Work required to assemble \boldsymbol{n} point charges:

The work required to construct a system of one point charge Q is: $W=Q V(\mathbf{r})$.

Work required to bring in the charge q_{1} from ∞ to $\mathbf{r}_{1}: W_{1}=q_{1} V_{0}=q_{1} \times 0=0$

Work required to bring in the charge q_{2} from ∞ to $\mathbf{r}_{\mathbf{2}}: W_{2}=q_{2} \mathrm{~V}_{1}=q_{2} \frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1}}{z_{12}}\right)$

Work required to bring in the charge q_{3} from ∞ to $\mathbf{r}_{3}: W_{3}=q_{3} \mathrm{~V}_{2}=q_{3} \frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1}}{\varepsilon_{13}}+\frac{q_{2}}{r_{23}}\right)$

Total work required to bring in the first three charges:

$$
W=W_{1}+W_{2}+W_{3}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} q_{2}}{n_{12}}+\frac{q_{1} q_{3}}{n_{13}}+\frac{q_{2} q_{3}}{n_{23}}\right)
$$

Total work required to bring in the first four charges:

$$
\begin{equation*}
W=W_{1}+W_{2}+W_{3}+W_{4}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{v_{13}}+\frac{q_{2} q_{3}}{v_{23}}+\frac{q_{1} q_{4}}{r_{14}}+\frac{q_{2} q_{4}}{z_{24}}+\frac{q_{3} q_{4}}{z_{34}}\right) \tag{6}
\end{equation*}
$$

Work required to assemble \boldsymbol{n} point charges:

Total work required to bring in the first four charges:

$$
W=W_{1}+W_{2}+W_{3}+\mathrm{W}_{4}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{\tau_{13}}+\frac{q_{2} q_{3}}{\tau_{23}}+\frac{q_{1} q_{4}}{\tau_{14}}+\frac{q_{2} q_{4}}{\tau_{24}}+\frac{q_{3} q_{4}}{\tau_{34}}\right)
$$

Total work required to bring in n point charges, with charge $q_{1}, q_{2}, q_{3} \cdots q_{n}$, respectively:

$$
\begin{aligned}
W & =\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{q_{i} q_{j}}{r_{i j}}=\frac{1}{2} \times \frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{q_{i} q_{j}}{r_{i j}} \\
& =\frac{1}{2} \times \frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} q_{i}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{q_{j}}{i_{i j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}=\frac{1}{2} \sum_{i=1}^{n} q_{i} V\left(\mathbf{r}_{\mathbf{i}}\right) \quad \begin{array}{l}
\text { - This is the total work required to assemble } n \text { point charges } \\
\text { - The potential } V\left(\mathbf{r}_{\mathbf{i}}\right) \text { is the potential at } \mathbf{r}_{\mathbf{i}} \text { due to all } \\
\text { charges, except the charge at } \mathbf{r}_{\mathbf{i}} .
\end{array}
\end{aligned}
$$

The Work required to assemble a continuous charge Distribution:

$$
1 \sum^{n} \quad \text { - This is the total worked required to assemble } n \text { point charges }
$$

What would be the required work if it is a continuous distribution of charge ?

$$
\begin{aligned}
\mathrm{W}=\frac{1}{2} \sum_{i=1}^{n} q_{i} V\left(\mathbf{r}_{\mathbf{i}}\right) \rightarrow & \frac{1}{2} \int_{v o l} d q V(\mathbf{r}) \\
& \rightarrow \frac{1}{2} \int_{v o l} \rho V(\mathbf{r}) d \tau
\end{aligned}
$$

Is this correct? Not really !
The potential $V(\mathbf{r})$ inside the integral is the potential at point \mathbf{r}. However, the potential $V\left(\mathbf{r}_{\mathbf{i}}\right)$ inside the summation in the potential at $\mathbf{r}_{\mathbf{i}}$ due to all the charges except the charge at $\mathbf{r}_{\mathbf{i}}$. Because of this difference in the definition of the potentials, the integral formula turns out to be different.

The Work required to assemble a continuous charge Distribution:

$$
\begin{aligned}
\mathrm{W}=\frac{1}{2} \int_{\text {vol }} \rho V d \tau=\frac{\epsilon_{0}}{2} \int_{\text {vol }}(\boldsymbol{\nabla} \cdot \mathbf{E}) V d \tau \quad & \left(\text { Using } \rho=\epsilon_{0}(\boldsymbol{\nabla} \cdot \mathbf{E})\right] \\
\mathrm{W}=-\frac{\epsilon_{0}}{2} \int_{\text {vol }} \mathbf{E} \cdot \boldsymbol{\nabla} V d \tau+\frac{\epsilon_{0}}{2} \int_{\text {vol }} \boldsymbol{\nabla} \cdot V \mathbf{E} d \tau & \binom{\text { Using the product rule }}{\boldsymbol{\nabla} \cdot(f \mathbf{A})=f(\boldsymbol{\nabla} \cdot \mathbf{A})+\mathbf{A} \cdot(\nabla f)} \\
\mathrm{W}=-\frac{\epsilon_{0}}{2} \int_{\text {vol }} \mathbf{E} \cdot \boldsymbol{\nabla} V d \tau+\frac{\epsilon_{0}}{2} \oint_{\text {surf }} V \mathbf{E} \cdot d \mathbf{a} & \binom{\text { Using the divergence theorem }}{\int_{V o l l}(\boldsymbol{\nabla} \cdot \mathbf{A}) d \tau=\oint_{\text {Surf }} \mathbf{A} \cdot d \mathbf{a}}
\end{aligned}
$$

$$
\mathrm{W}=\frac{\epsilon_{0}}{2} \int_{\text {vol }} E^{2} d \tau+\frac{\epsilon_{0}}{2} \oint_{\text {surf }} V \mathbf{E} \cdot d \mathbf{a} \quad(\text { Using }-\nabla V=\mathbf{E})
$$

$$
\mathrm{W}=\frac{\epsilon_{0}}{2} \int_{\text {all space }} E^{2} d \tau
$$

The Energy of a Continuous Charge Distribution:

$$
\mathrm{W}=\frac{1}{2} \int_{\text {vol }} \rho V d \tau \quad \mathrm{~W}=\frac{\epsilon_{0}}{2} \int_{\text {all space }} E^{2} d \tau
$$

So, what is the energy of a point charge using the above formula?
Electric field of a point charge is $\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}$
The energy of a point charge is therefore,
$\mathrm{W}=\frac{\epsilon_{0}}{2} \int_{\text {all space }}\left(\frac{1}{4 \pi \epsilon_{0}}\right)^{2}\left(\frac{q}{r^{2}}\right)^{2} r^{2} \sin \theta d r d \theta d \phi=\frac{q^{2}}{8 \pi \epsilon_{0}} \int_{\text {all space }} \frac{1}{r^{2}} d r$
$=\infty \quad$?? due to incorrect conversion of the sum into an integral

$$
\mathrm{W}=\frac{1}{2} \sum_{i=1}^{n} q_{i} V\left(\mathbf{r}_{\mathbf{i}}\right) \rightarrow \frac{1}{2} \int_{\text {vol }} \rho V d \tau
$$

This is the total work done to assemble a set of point charges. This does not include the self energy of assembling a point charge.

This is the total energy of a charge distribution including the self energy of assembling the charge distribution. Assembling a point charge requires infinite energy. This is why this expression gives infinity for the energy of a point charge.

The Electrostatic Energy (Summary):

The work required to construct a system of a point charge Q is: $W=\mathrm{QV}(\mathbf{r})$

Total work required to put together n point charges is: $\quad W=\frac{1}{2} \sum_{i=1}^{n} q_{i} V\left(\mathbf{r}_{\mathbf{i}}\right)$
$V\left(\mathbf{r}_{\mathbf{i}}\right)$ is the potential at $\mathbf{r}_{\mathbf{i}}$ due to all charges, except the charge at $\mathbf{r}_{\mathbf{i}}$.

The Energy of a Continuous Charge Distribution: $\mathrm{W}=\frac{1}{2} \int_{\text {vol }} \rho V d \tau$

$$
=\frac{\epsilon_{0}}{2} \int_{\text {all space }} E^{2} d \tau
$$

Note \# 1: The total work required to assemble a continuous charge distribution = the total energy of a continuous charge distribution
Note \# 2: The self energy of assembling a point charge is infinite. Therefore, the total energy of a point charge is infinite.
Note \# 3: For systems consisting of point charges, we do not talk about the total energy. We only discuss the total work required to put together the system.

