Semester II, 2017-18
Department of Physics, IIT Kanpur

PHY103A: Lecture \# 9

(Text Book: Intro to Electrodynamics by Griffiths, $3^{\text {rd }}$ Ed.)

Anand Kumar Jha
20-Jan-2018

Summary of Lecture \# 8:

- Force per unit area on a conductor: $\mathbf{F}=\sigma \mathbf{E}_{\text {other }}=\frac{\sigma^{2}}{2 \epsilon_{0}} \widehat{\mathbf{n}}$
- The electrostatic pressure on a conductor: $P=\frac{\sigma^{2}}{2 \epsilon_{0}}=\frac{\epsilon_{0}}{2} E^{2}$
- Capacitance C is defined as: $C \equiv \frac{Q}{V}$
- The work necessary to charge a capacitor upto charge $Q: W=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} C V^{2}$
- The electrostatic interaction energy: $W=W_{1}+W_{2}+\epsilon_{0} \int \mathbf{E}_{\mathbf{1}} \cdot \mathbf{E}_{\mathbf{2}} d \tau$
- Applications of Electrostatics:
(i) Faraday Cage
(ii) Capacitor
- Special techniques: Laplace's Equation in one-dimension

Questions 1:

Does the force on q_{a} depend on q_{c}, if the cavity was not spherical
Ans: No

$$
\text { - Force on } q_{a} \text { ? }
$$

- Force on q_{b} ? 0

Questions 2:

If $q=e$, how does induced charge distribute itself on the inner surface?
Ans: Within classical electrodynamics, the induced charge will distribute as usual. In quantum electrodynamics, e is the minimum charge. Induced charge density is interpreted probabilistically.

Special Techniques: Laplace's Equation

Q: How to find electric field \mathbf{E} ?
Ans: $\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r^{2}} \hat{r} \quad$ (Coulomb's Law)
Very difficult to calculate the integral except for very simple situation
Alternative: First calculate the electric potential

$$
\mathrm{V}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}
$$

This integral is relatively easier but in general still difficult to handle
Alternative: Express the above equation in the different form.

$$
\nabla^{2} \mathrm{~V}=-\frac{\rho}{\epsilon_{0}} \quad \text { (Poisson's Equation) }
$$

When $\rho=0 \quad \nabla^{2} \mathrm{~V}=0 \quad$ (Laplace's Equation)
If $\rho=0$ everywhere, $V=0$ everywhere
If ρ is localized, what is V away from the charge distribution?

Laplace's Equation

$$
\nabla^{2} V=0
$$

$$
\frac{\partial^{2}}{\partial x^{2}} V+\frac{\partial^{2}}{\partial y^{2}} V+\frac{\partial^{2}}{\partial z^{2}} V=0
$$

(Laplace's Equation)
(In Cartesian coordinates)
If the potential $V(\mathbf{r})$ is a solution to the Laplace's equation then $V(\mathbf{r})$ is the average value of potential over a spherical surface of radius R centered at \mathbf{r}.

$$
V(\mathbf{r})=\frac{1}{4 \pi R^{2}} \oint_{\text {sphere }} V d a
$$

As a result, $\mathrm{V}(\mathbf{r})$ cannot have local maxima or minima; the extreme values of $V(\mathbf{r})$ must occur at the boundaries.

Why? Because if the potential has a maximum value $V_{\text {max }}(\mathbf{r})$ at \mathbf{r} then one could draw a small sphere around \mathbf{r} such that every value of potential on that sphere and thus the average would be smaller than $V_{\text {max }}(\mathbf{r})$

Laplace's Equation

$$
\nabla^{2} V=0
$$

$$
\frac{\partial^{2}}{\partial x^{2}} V+\frac{\partial^{2}}{\partial y^{2}} V+\frac{\partial^{2}}{\partial z^{2}} V=0
$$

(Laplace's Equation)
(In Cartesian coordinates)
If the potential $V(\mathbf{r})$ is a solution to the Laplace's equation then $V(\mathbf{r})$ is the average value of potential over a spherical surface of radius R centered at \mathbf{r}.

Proof:

$$
V(\mathbf{r})=\frac{1}{4 \pi R^{2}} \oint_{\text {sphere }} V d a
$$

$$
=\frac{1}{4 \pi R^{2}} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{q}{4 \pi \epsilon_{0}} \frac{1}{r} R^{2} \sin \theta d \theta d \phi
$$

$$
=\frac{2 \pi}{4 \pi R} \frac{q}{4 \pi \epsilon_{0}} \int_{0}^{\pi} \frac{R}{\sqrt{z^{2}+R^{2}-2 z R \cos \theta}} \sin \theta d \theta
$$

$$
=\frac{2 \pi}{4 \pi R} \frac{q}{4 \pi \epsilon_{0}} \int_{0}^{\pi} \frac{d}{d \theta}\left(\frac{1}{z} \sqrt{z^{2}+R^{2}-2 z R \cos \theta}\right) d \theta
$$

$$
=\frac{2 \pi}{4 \pi R} \frac{q}{4 \pi \epsilon_{0} z}[(z+R)-(z-R)]=\frac{q}{4 \pi \epsilon_{0} z}
$$

Laplace's Equation

$$
\nabla^{2} V=0
$$

$$
\frac{\partial^{2}}{\partial x^{2}} V+\frac{\partial^{2}}{\partial y^{2}} V+\frac{\partial^{2}}{\partial z^{2}} V=0
$$

(Laplace's Equation)
(In Cartesian coordinates)
If the potential $V(\mathbf{r})$ is a solution to the Laplace's equation then $V(\mathbf{r})$ is the average value of potential over a spherical surface of radius R centered at \mathbf{r}.

Proof:

$$
V(\mathbf{r})=\frac{1}{4 \pi R^{2}} \oint_{\text {sphere }} V d a=\frac{q}{4 \pi \epsilon_{0} z}
$$

We have proved the theorem for a point charge but since potentials follow the principle of linear superposition, the theorem is proved for any arbitrary charge distribution.

Laplace's Equation in two dimensions

If the potential $\mathrm{V}(x, y)$ is a solution to the Laplace's equation then $\mathrm{V}(x, y)$ is the average value of potential over a circle of radius R centered at (x, y).

$$
V(x, y)=\frac{1}{2 \pi R} \oint_{\text {circle }} V d l
$$

As a result, $\mathrm{V}(x, y)$ cannot have local maxima or minima; the extreme values of $\mathrm{V}(x, y)$ must occur at the boundaries.

Laplace's Equation in one dimension

If the potential $V(x)$ is a solution to the Laplace's equation then $V(x)$ is the average of the potential at $x+a$ and $x-a$

$$
V(x, y)=\frac{1}{2}[V(x+a)+V(x-a)]
$$

As a result, $\mathrm{V}(x)$ cannot have local maxima or minima; the extreme values of $V(x)$ must occur at the end points.

Laplace's Equation (Solutions without solving it)

First Uniqueness Theorem: The solution to Laplace's Equation in some volume \mathcal{V} is uniquely determined if V is specified on the boundary surface \mathcal{S}.

Proof: Suppose V_{1} and V_{2} are two distinct solutions to Laplace's equation within volume \mathcal{V} with the same value on the boundary surface \mathcal{S}.

$$
\begin{aligned}
& \nabla^{2} V_{1}=0 \quad \text { and } \quad \nabla^{2} V_{2}=0 \\
& \mathrm{~V}_{3} \equiv \mathrm{~V}_{1}-\mathrm{V}_{2} \quad \nabla^{2} \mathrm{~V}_{3}=\nabla^{2}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)=\nabla^{2} \mathrm{~V}_{1}-\nabla^{2} \mathrm{~V}_{2}=0
\end{aligned}
$$

V_{3} also satisfies Laplaces's equation.
What is the value of V_{3} at the boundary surface \mathcal{S} ?

$$
0 \quad \text { (Because at the boundary, } V_{1}=V_{2} \text {. Hence, } V_{3}=V_{1}-V_{2}=0 \text {) }
$$

But Laplace's equation does not allow for any local extrema.
So, since $V_{3}=0$ at the boundary, V_{3} must be 0 everywhere.
Hence

$$
V_{1}=V_{2}
$$

Ex. 3.1 (Griffiths, $3^{\text {rd }}$ Ed.): What is the potential inside an enclosure with no charge and surrounded $\mathbf{E}_{\text {ext }}$ completely by a conducting material?

Potential on the cavity-wall is a constant $V=V_{0}$.

Note $1: \mathrm{V}=\mathrm{V}_{0}$ is \boldsymbol{a} solution of the Laplaces's equation inside the cavity
Note 2: $\mathrm{V}=\mathrm{V}_{0}$ satisfies the conditions on the boundary surface.

Therefore, $\mathrm{V}=\mathrm{V}_{0}$ must be the solution of the problem.

Laplace's Equation (Solutions without solving it)

Corollary to First Uniqueness Theorem: The potential in a volume is uniquely determined if (a) the charge desity throughout the region and (b) the value of V at all boundaries, are specified.

Proof: Suppose V_{1} and V_{2} are two distinct solutions to Poisson's equation in a region with volume \mathcal{V} and charge density $\rho . \mathrm{V}_{1}$ and V_{2} have the same value at the boundary surface \mathcal{S}.

$$
\begin{array}{lll}
\nabla^{2} \mathrm{~V}_{1}=-\frac{\rho}{\epsilon_{0}} & \text { and } & \nabla^{2} \mathrm{~V}_{2}=-\frac{\rho}{\epsilon_{0}} \\
\mathrm{~V}_{3} \equiv \mathrm{~V}_{1}-\mathrm{V}_{2} & \nabla^{2} \mathrm{~V}_{3}=\nabla^{2}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)=\nabla^{2} \mathrm{~V}_{1}-\nabla^{2} \mathrm{~V}_{2}=0
\end{array}
$$

V_{3} satisfies Laplaces's equation.
What is the value of V_{3} at the boundary surface \mathcal{S} ?

$$
0 \quad \text { (Because at the boundary, } V_{1}=V_{2} \text {. Hence, } V_{3}=V_{1}-V_{2}=0 \text {) }
$$

But Laplace's equation does not allow for any local extrema.
So, if $V_{3}=0$ at the boundary, it must be 0 everywhere.
Hence

$$
V_{1}=V_{2}
$$

Laplace's Equation (Solutions without solving it)

Second Uniqueness Theorem: In a volume \mathcal{V} surrounded by conductors and containing a specified charge density ρ, the electric field is uniquely determined if the total charge on each conductor is given.

Proof: Suppose $\mathbf{E}_{\mathbf{1}}$ and $\mathbf{E}_{\mathbf{2}}$ are two distinct electric fields satisfying the above conditions.

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \mathbf{E}_{\mathbf{1}}=\frac{\rho}{\epsilon_{0}} \text { and } \quad \boldsymbol{\nabla} \cdot \mathbf{E}_{\mathbf{2}}=\frac{\rho}{\epsilon_{0}} \quad \text { (Gauss's law in space between the cor } \\
\oint_{\mathcal{S}_{i}} \mathbf{E}_{\mathbf{1}} \cdot d \mathbf{a}=\frac{Q_{i}}{\epsilon_{0}} \quad \text { and } \quad \oint_{\mathcal{S}_{i}} \mathbf{E}_{\mathbf{2}} \cdot d \mathbf{a}=\frac{Q_{i}}{\epsilon_{0}} \quad \begin{array}{l}
\text { (for Gaussian surface } \\
\text { enclosing } i^{\text {th }} \text { conductor) }
\end{array} \\
\oint_{\mathcal{S}} \mathbf{E}_{\mathbf{1}} \cdot d \mathbf{a}=\frac{Q_{\text {total }}}{\epsilon_{0}} \text { and } \oint_{\mathcal{S}} \mathbf{E}_{\mathbf{2}} \cdot d \mathbf{a}=\frac{Q_{\text {total }}}{\epsilon_{0}} \\
\text { (for Gaussian surface } \\
\text { enclosing all conductors) } \\
\mathbf{E}_{\mathbf{3}} \equiv \mathbf{E}_{\mathbf{1}}-\mathbf{E}_{\mathbf{2}} \\
\boldsymbol{\nabla} \cdot \mathbf{E}_{\mathbf{3}}=\boldsymbol{\nabla} \cdot\left(\mathbf{E}_{\mathbf{1}}-\mathbf{E}_{\mathbf{2}}\right)=0 \quad \oint_{\mathcal{S}_{i}} \mathbf{E}_{\mathbf{3}} \cdot d \mathbf{a}=0
\end{gathered}
$$

Laplace's Equation (Solutions without solving it)

Second Uniqueness Theorem: In a volume \mathcal{V}

 surrounded by conductors and containing a specified charge density ρ, the electric field is uniquely determined if the total charge on each conductor is given.
Proof:

We know, V_{3} as well as V_{1} and V_{2} are all constants over a conducting surface
$\boldsymbol{\nabla} \cdot\left(\mathrm{V}_{3} \mathbf{E}_{3}\right)=\mathrm{V}_{3}\left(\boldsymbol{\nabla} \cdot \mathbf{E}_{\mathbf{3}}\right)+\mathbf{E}_{3} \cdot\left(\boldsymbol{\nabla} \mathrm{~V}_{3}\right)=-\left(E_{3}\right)^{2}$

$\int_{\mathcal{V}} \boldsymbol{\nabla} \cdot\left(\mathrm{V}_{3} \mathbf{E}_{3}\right) d \tau=-\int_{\mathcal{V}}\left(E_{3}\right)^{2} d \tau \quad$ (Integrating over the entire volume)
$\oint_{\mathcal{S}} V_{3} \mathbf{E}_{\mathbf{3}} \cdot d \mathbf{a}=-\int_{\mathcal{V}}\left(E_{3}\right)^{2} d \tau \quad$ (Applying divergence theorem)
$\mathrm{V}_{3} \oint_{\mathcal{S}} \mathbf{E}_{3} \cdot d \mathbf{a}=-\int_{\mathcal{V}}\left(E_{3}\right)^{2} d \tau \quad$ (Since V_{3} is a constant on the outer boundary \mathcal{S})
$0=-\int_{\mathcal{V}}\left(E_{3}\right)^{2} d \tau \quad\left(\right.$ Since $\left.\oint_{\mathcal{S}_{i}} \mathbf{E}_{\mathbf{3}} \cdot d \mathbf{a}=0\right) \quad \square \quad E_{3}=0$ (everywhere) $\begin{gathered}\square \mathbf{E}_{\mathbf{1}}=\mathbf{E}_{\mathbf{2}} \quad \mathbf{Q E D}^{3}\end{gathered}$

Laplace's Equation (Solutions without solving it)

Comments on Uniqueness theorem:

- If certain conditions are fulfilled, the Uniqueness theorems guarantee that the solution is unique.
- Even if \boldsymbol{a} solution is obtained by mere guess or intuition that satisfies all the necessary conditions, it must be the unique solution.
- Uniqueness theorems do not directly help solve Laplace's or Poisson's equation. They help establish that the solution is unique.

