Semester II, 2017-18 Department of Physics, IIT Kanpur

PHY103A: Lecture # 9

(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 20-Jan-2018

Summary of Lecture # 8:

- Force per unit area on a conductor: $\mathbf{F} = \sigma \mathbf{E}_{other} = \frac{\sigma^2}{2\epsilon_0} \,\widehat{\mathbf{n}}$
- The electrostatic pressure on a conductor:

$$P = \frac{\sigma^2}{2\epsilon_0} = \frac{\epsilon_0}{2}E^2$$

- Capacitance *C* is defined as: $C \equiv \frac{Q}{V}$
- The work necessary to charge a capacitor up to charge Q: $W = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C V^2$
- The electrostatic interaction energy: $W = W_1 + W_2 + \epsilon_0 \int \mathbf{E_1} \cdot \mathbf{E_2} \, d\tau$
- Applications of Electrostatics:
 (i) Faraday Cage
 (ii) Capacitor
- Special techniques: Laplace's Equation in one-dimension

Questions 1:

Does the force on q_a depend on q_c , if the cavity was not spherical

Ans: No

- Force on
$$q_a$$
?

- Force on
$$q_b$$
? 0

 q_{c}

3

Questions 2:

- If q = e, how does induced charge distribute itself on the inner surface?
- Ans: Within classical electrodynamics, the induced charge will distribute as usual. In quantum electrodynamics, *e* is the minimum charge. Induced charge density is interpreted probabilistically. E=0 +

Special Techniques: Laplace's Equation

Q: How to find electric field **E** ?

Ans:
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r^2} \hat{\mathbf{r}}$$
 (Coulomb's Law)

Very difficult to calculate the integral except for very simple situation

Alternative: First calculate the electric potential

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$$

This integral is relatively easier but in general still difficult to handle

x

Alternative: Express the above equation in the different form. z

$$\nabla^2 V = -\frac{\rho}{\epsilon_0}$$
 (Poisson's Equation)

When $\rho = 0$ $\nabla^2 V = 0$ (Laplace's Equation)

If $\rho = 0$ everywhere, V = 0 everywhere

If ρ is localized, what is *V* away from the charge distribution?

 $\rho = 0$

Laplace's Equation

$$\nabla^2 V = 0 \qquad \qquad \frac{\partial^2}{\partial x^2} V + \frac{\partial^2}{\partial y^2} V + \frac{\partial^2}{\partial z^2} V = 0$$
(Laplace's Equation) (In Cartesian coordinates)

If the potential $V(\mathbf{r})$ is a solution to the Laplace's equation then $V(\mathbf{r})$ is the average value of potential over a spherical surface of radius *R* centered at \mathbf{r} .

$$V(\mathbf{r}) = \frac{1}{4\pi R^2} \oint_{sphere} V da$$

As a result, $V(\mathbf{r})$ cannot have local maxima or minima; the extreme values of $V(\mathbf{r})$ must occur at the boundaries.

Why? Because if the potential has a maximum value $V_{max}(\mathbf{r})$ at \mathbf{r} then one could draw a small sphere around \mathbf{r} such that every value of potential on that sphere and thus the average would be smaller than $V_{max}(\mathbf{r})$

Laplace's Equation

$$= 0 \qquad \qquad \frac{\partial^2}{\partial x^2} V + \frac{\partial^2}{\partial y^2} V + \frac{\partial^2}{\partial z^2} V = 0$$

(Laplace's Equation)

 $\nabla^2 V$

(In Cartesian coordinates)

If the potential $V(\mathbf{r})$ is a solution to the Laplace's equation then $V(\mathbf{r})$ is the average value of potential over a spherical surface of radius *R* centered at \mathbf{r} . **Proof:** $z \downarrow$

$$V(\mathbf{r}) = \frac{1}{4\pi R^2} \oint_{sphere} V da$$

$$= \frac{1}{4\pi R^2} \int_0^{\pi} \int_0^{2\pi} \frac{q}{4\pi\epsilon_0} \frac{1}{\epsilon} R^2 \sin\theta d\theta d\phi$$

$$= \frac{2\pi}{4\pi R} \frac{q}{4\pi\epsilon_0} \int_0^{\pi} \frac{R}{\sqrt{z^2 + R^2 - 2zR\cos\theta}} \sin\theta d\theta$$

$$= \frac{2\pi}{4\pi R} \frac{q}{4\pi\epsilon_0} \int_0^{\pi} \frac{d}{d\theta} \left(\frac{1}{z}\sqrt{z^2 + R^2 - 2zR\cos\theta}\right) d\theta$$

$$= \frac{2\pi}{4\pi R} \frac{q}{4\pi\epsilon_0 z} \left[(z+R) - (z-R) \right] = \frac{q}{4\pi\epsilon_0 z}$$

Laplace's Equation

$$\frac{\partial^2}{\partial x^2}V + \frac{\partial^2}{\partial y^2}V + \frac{\partial^2}{\partial z^2}V = 0$$

(Laplace's Equation)

 $\nabla^2 V = 0$

(In Cartesian coordinates)

If the potential $V(\mathbf{r})$ is a solution to the Laplace's equation then $V(\mathbf{r})$ is the average value of potential over a spherical surface of radius *R* centered at \mathbf{r} . **Proof:** $Z \downarrow$

$$V(\mathbf{r}) = \frac{1}{4\pi R^2} \oint_{sphere} V da = \frac{q}{4\pi\epsilon_0 z}$$

We have proved the theorem for a point charge but since potentials follow the principle of linear superposition, the theorem is proved for any arbitrary charge distribution.

2 da θ х

Laplace's Equation in two dimensions

If the potential V(x, y) is a solution to the Laplace's equation then V(x, y) is the average value of potential over a circle of radius *R* centered at (x, y).

$$V(x,y) = \frac{1}{2\pi R} \oint_{circle} V dl$$

As a result, V(x, y) cannot have local maxima or minima; the extreme values of V(x, y) must occur at the boundaries.

Laplace's Equation in one dimension

If the potential V(x) is a solution to the Laplace's equation then V(x) is the average of the potential at x + a and x - a

$$V(x,y) = \frac{1}{2} [V(x+a) + V(x-a)]$$

As a result, V(x) cannot have local maxima or minima; the extreme values of V(x) must occur at the end points.

First Uniqueness Theorem: The solution to Laplace's Equation in some volume \mathcal{V} is uniquely determined if V is specified on the boundary surface \mathcal{S} .

Proof: Suppose V_1 and V_2 are two distinct solutions to Laplace's equation within volume \mathcal{V} with the same value on the boundary surface \mathcal{S} .

$$\nabla^2 V_1 = 0 \quad \text{and} \quad \nabla^2 V_2 = 0$$

 $V_3 \equiv V_1 - V_2 \quad \nabla^2 V_3 = \nabla^2 (V_1 - V_2) = \nabla^2 V_1 - \nabla^2 V_2 = 0$

 $V_3 \text{ also satisfies Laplaces's equation.}$

What is the value of V_3 at the boundary surface S?

0 (Because at the boundary, $V_1 = V_2$. Hence, $V_3 = V_1 - V_2 = 0$)

But Laplace's equation does not allow for any local extrema.

So, since $V_3 = 0$ at the boundary, V_3 must be 0 everywhere.

Hence $V_1 = V_2$ **QED**

Ex. 3.1 (Griffiths, 3^{rd} Ed.): What is the potential inside an enclosure with no charge and surrounded \mathbf{E}_{ext} completely by a conducting material?

Potential on the cavity-wall is a constant $V = V_0$.

Note 1: $V = V_0$ is *a* solution of the Laplaces's equation inside the cavity

Note 2: $V = V_0$ satisfies the conditions on the boundary surface.

Therefore, $V = V_0$ must be *the* solution of the problem.

Corollary to First Uniqueness Theorem: The potential in a volume is uniquely determined if (a) the charge desity throughout the region and (b) the value of V at all boundaries, are specified.

Proof: Suppose V₁ and V₂ are two distinct solutions to Poisson's equation in a region with volume \mathcal{V} and charge density ρ . V₁ and V₂ have the same value at the boundary surface \mathcal{S} .

$$\nabla^2 V_1 = -\frac{\rho}{\epsilon_0} \quad \text{and} \quad \nabla^2 V_2 = -\frac{\rho}{\epsilon_0}$$

$$V_3 \equiv V_1 - V_2 \quad \nabla^2 V_3 = \nabla^2 (V_1 - V_2) = \nabla^2 V_1 - \nabla^2 V_2 = 0$$

$$V_3 \text{ satisfies Laplaces's equation.}$$

What is the value of V_3 at the boundary surface $\boldsymbol{\mathcal{S}}$?

0 (Because at the boundary, $V_1 = V_2$. Hence, $V_3 = V_1 - V_2 = 0$)

But Laplace's equation does not allow for any local extrema.

So, if $V_3 = 0$ at the boundary, it must be 0 everywhere.

Hence $V_1 = V_2$ **QED**

 \mathcal{S}

 ρ

Second Uniqueness Theorem: In a volume \mathcal{V} surrounded by conductors and containing a specified charge density ρ , the electric field is uniquely determined if the total charge on each conductor is given.

Proof: Suppose E_1 and E_2 are two distinct electric fields satisfying the above conditions.

$$\nabla \cdot \mathbf{E}_{1} = \frac{\rho}{\epsilon_{0}} \text{ and } \nabla \cdot \mathbf{E}_{2} = \frac{\rho}{\epsilon_{0}} \text{ (Gauss's law in space between the conductors)}$$

$$\oint_{\mathcal{S}_{i}} \mathbf{E}_{1} \cdot d\mathbf{a} = \frac{Q_{i}}{\epsilon_{0}} \text{ and } \oint_{\mathcal{S}_{i}} \mathbf{E}_{2} \cdot d\mathbf{a} = \frac{Q_{i}}{\epsilon_{0}} \text{ (for Gaussian surface enclosing } i^{\text{th}} \text{ conductor)}$$

$$\oint_{\mathcal{S}} \mathbf{E}_{1} \cdot d\mathbf{a} = \frac{Q_{total}}{\epsilon_{0}} \text{ and } \oint_{\mathcal{S}} \mathbf{E}_{2} \cdot d\mathbf{a} = \frac{Q_{total}}{\epsilon_{0}} \text{ (for Gaussian surface enclosing } all \text{ conductors)}$$

$$\mathbf{E}_{3} \equiv \mathbf{E}_{1} - \mathbf{E}_{2} \quad \nabla \cdot \mathbf{E}_{3} = \nabla \cdot (\mathbf{E}_{1} - \mathbf{E}_{2}) = 0 \quad \oint_{\mathcal{S}_{i}} \mathbf{E}_{3} \cdot d\mathbf{a} = 0$$

Second Uniqueness Theorem: In a volume \mathcal{V} surrounded by conductors and containing a specified charge density ρ , the electric field is uniquely determined if the total charge on each conductor is given.

Proof:

We know, V_3 as well as V_1 and V_2 are all constants over a conducting surface

$$\nabla \cdot (\nabla_{3} \mathbf{E}_{3}) = \nabla_{3} (\nabla \cdot \mathbf{E}_{3}) + \mathbf{E}_{3} \cdot (\nabla \nabla_{3}) = -(E_{3})^{2} \quad (\text{Using } \nabla \cdot \mathbf{E}_{3} = 0 \quad \& \quad \mathbf{E}_{3} = -\nabla V_{3}$$

$$\int_{\mathcal{V}} \nabla \cdot (\nabla_{3} \mathbf{E}_{3}) d\tau = -\int_{\mathcal{V}} (E_{3})^{2} d\tau \quad (\text{Integrating over the entire volume})$$

$$\oint_{\mathcal{S}} \nabla_{3} \mathbf{E}_{3} \cdot d\mathbf{a} = -\int_{\mathcal{V}} (E_{3})^{2} d\tau \quad (\text{Applying divergence theorem})$$

$$V_{3} \oint_{\mathcal{S}} \mathbf{E}_{3} \cdot d\mathbf{a} = -\int_{\mathcal{V}} (E_{3})^{2} d\tau \quad (\text{Since } \nabla_{3} \text{ is a constant on the outer boundary } \mathcal{S})$$

$$0 = -\int_{\mathcal{V}} (E_{3})^{2} d\tau \quad (\text{Since } \oint_{\mathcal{S}_{i}} \mathbf{E}_{3} \cdot d\mathbf{a} = 0) \quad \square \quad E_{3} = 0 \text{ (everywhere)}$$

$$\square \quad \mathbf{E}_{1} = \mathbf{E}_{2} \quad \mathbf{O} \mathbf{E} \mathbf{D}^{3}$$

Comments on Uniqueness theorem:

- If certain conditions are fulfilled, the Uniqueness theorems guarantee that the solution is unique.
- Even if *a* solution is obtained by mere guess or intuition that satisfies all the necessary conditions, it must be *the* unique solution.
- Uniqueness theorems do not directly help solve Laplace's or Poisson's equation. They help establish that the solution is unique.