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Summary of Lecture # 8: 

2 

• Force per unit area on a conductor:  𝐅𝐅 = 𝜎𝜎 𝐄𝐄other =
𝜎𝜎2

2𝜖𝜖0
 𝐧𝐧� 

• The electrostatic pressure on a conductor: 𝑃𝑃 =
𝜎𝜎2

2𝜖𝜖0
 =

𝜖𝜖0
2
𝐸𝐸2 

• Capacitance 𝐶𝐶 is defined as: 𝐶𝐶 ≡
𝑄𝑄
𝑉𝑉

 

• The work necessary to charge a capacitor upto charge 𝑄𝑄: 𝑊𝑊 =
1
2
𝑄𝑄2

𝐶𝐶
=

1
2
𝐶𝐶𝑉𝑉2 

𝑊𝑊 = 𝑊𝑊1 + 𝑊𝑊2 + 𝜖𝜖0 �𝐄𝐄𝟏𝟏 ⋅ 𝐄𝐄𝟐𝟐 𝑑𝑑𝑑𝑑 • The electrostatic interaction energy: 

• Applications of Electrostatics: 
(i) Faraday Cage 

     (ii) Capacitor 

• Special techniques: Laplace’s Equation in one-dimension 



Questions 1: 

3 

Does the force on 𝑞𝑞𝑎𝑎 depend on 𝑞𝑞𝑐𝑐, if the cavity was not spherical  

- Force on 𝑞𝑞𝑎𝑎 ?  0 

- Force on 𝑞𝑞𝑏𝑏 ?  0 

Ans: No 

Questions 2: 
If 𝑞𝑞 = 𝑒𝑒, how does induced charge distribute itself on the inner surface? 

Ans: Within classical electrodynamics, the induced charge will distribute as usual. 
         In quantum electrodynamics, 𝑒𝑒 is the minimum charge. 
         Induced charge density is interpreted probabilistically. 
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Special Techniques: Laplace’s Equation 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑞𝑞
r2

 r̂ 

𝛁𝛁2V = −
𝜌𝜌 
𝜖𝜖0

 

V(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�
𝑑𝑑𝑞𝑞
r   

Q: How to find electric field 𝐄𝐄 ? 

Ans: (Coulomb’s Law) 

Very difficult to calculate the integral except for very simple situation 

Alternative: 

This integral is relatively easier but in general still difficult to handle 

Alternative: 

When 𝜌𝜌 = 0 𝛁𝛁2V = 0 (Laplace’s Equation) 

(Poisson’s Equation) 

If 𝜌𝜌 = 0 everywhere, 𝑉𝑉 = 0 everywhere 

If 𝜌𝜌 is localized, what is 𝑉𝑉 away from the charge distribution? 

 Express the above equation in the different form. 

First calculate the electric potential 



Laplace’s Equation 

𝛁𝛁2V = 0 

(Laplace’s Equation) (In Cartesian coordinates) 

𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑉𝑉 +

𝜕𝜕2

𝜕𝜕𝑦𝑦2
𝑉𝑉 +

𝜕𝜕2

𝜕𝜕𝑧𝑧2
𝑉𝑉 = 0 

If the potential V(𝐫𝐫) is a solution to the Laplace’s equation then V(𝐫𝐫) is the 
average value of potential over a spherical surface of radius 𝑅𝑅 centered at 𝐫𝐫. 

As a result, V(𝐫𝐫) cannot have local maxima or minima; the extreme values 
of V(𝐫𝐫) must occur at the boundaries. 

𝑉𝑉 𝐫𝐫 =
1

4𝜋𝜋𝑅𝑅2
� 𝑉𝑉𝑑𝑑𝑉𝑉

 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

Why? Because if the potential has a maximum value Vmax(𝐫𝐫) at 𝐫𝐫 
then one could draw a small sphere around 𝐫𝐫 such that every 
value of potential on that sphere and thus the average would 
be smaller than Vmax(𝐫𝐫) 
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Laplace’s Equation 

𝛁𝛁2V = 0 

(Laplace’s Equation) (In Cartesian coordinates) 

𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑉𝑉 +

𝜕𝜕2

𝜕𝜕𝑦𝑦2
𝑉𝑉 +

𝜕𝜕2

𝜕𝜕𝑧𝑧2
𝑉𝑉 = 0 

If the potential V(𝐫𝐫) is a solution to the Laplace’s equation then V(𝐫𝐫) is the 
average value of potential over a spherical surface of radius 𝑅𝑅 centered at 𝐫𝐫. 

Proof: 

𝑉𝑉 𝐫𝐫 =
1

4𝜋𝜋𝑅𝑅2
� 𝑉𝑉𝑑𝑑𝑉𝑉

 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

=
1

4𝜋𝜋𝑅𝑅2
� �

𝑞𝑞
4𝜋𝜋𝜖𝜖0

2𝜋𝜋

0

1
r
𝑅𝑅2sin𝜃𝜃𝑑𝑑𝜃𝜃𝑑𝑑𝑑𝑑

𝜋𝜋

0
 

=
2𝜋𝜋
4𝜋𝜋𝑅𝑅

𝑞𝑞
4𝜋𝜋𝜖𝜖0

�
𝑅𝑅

𝑧𝑧2 + 𝑅𝑅2 − 2𝑧𝑧𝑅𝑅cos𝜃𝜃 

𝜋𝜋

0
sin𝜃𝜃𝑑𝑑𝜃𝜃 

=
2𝜋𝜋
4𝜋𝜋𝑅𝑅

𝑞𝑞
4𝜋𝜋𝜖𝜖0

�
𝑑𝑑
𝑑𝑑𝜃𝜃 

(
1
𝑧𝑧

𝑧𝑧2 + 𝑅𝑅2 − 2𝑧𝑧𝑅𝑅cos𝜃𝜃 )
𝜋𝜋

0
𝑑𝑑𝜃𝜃 

=
2𝜋𝜋
4𝜋𝜋𝑅𝑅

𝑞𝑞
4𝜋𝜋𝜖𝜖0𝑧𝑧

𝑧𝑧 + 𝑅𝑅 − (𝑧𝑧 − 𝑅𝑅)  =
𝑞𝑞

4𝜋𝜋𝜖𝜖0𝑧𝑧
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Laplace’s Equation 

𝛁𝛁2V = 0 

(Laplace’s Equation) (In Cartesian coordinates) 

𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝑉𝑉 +

𝜕𝜕2

𝜕𝜕𝑦𝑦2
𝑉𝑉 +

𝜕𝜕2

𝜕𝜕𝑧𝑧2
𝑉𝑉 = 0 

If the potential V(𝐫𝐫) is a solution to the Laplace’s equation then V(𝐫𝐫) is the 
average value of potential over a spherical surface of radius 𝑅𝑅 centered at 𝐫𝐫. 

𝑉𝑉 𝐫𝐫 =
1

4𝜋𝜋𝑅𝑅2
� 𝑉𝑉𝑑𝑑𝑉𝑉

 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 =

𝑞𝑞
4𝜋𝜋𝜖𝜖0𝑧𝑧

 

We have proved the theorem for a point charge but 
since potentials follow the principle of linear 
superposition, the theorem is proved for any arbitrary 
charge distribution.  
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QED 

Proof: 



Laplace’s Equation in two dimensions 

If the potential V(𝑥𝑥,𝑦𝑦) is a solution to the Laplace’s equation then V(𝑥𝑥,𝑦𝑦) is 
the average value of potential over a circle of radius 𝑅𝑅 centered at (𝑥𝑥,𝑦𝑦). 

𝑉𝑉 𝑥𝑥,𝑦𝑦 =
1

2𝜋𝜋𝑅𝑅 � 𝑉𝑉𝑑𝑑𝑉𝑉
 

𝑐𝑐𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝
 

As a result, V(𝑥𝑥,𝑦𝑦) cannot have local maxima or minima; the extreme 
values of V(𝑥𝑥,𝑦𝑦) must occur at the boundaries. 

If the potential V(𝑥𝑥) is a solution to the Laplace’s equation then V(𝑥𝑥) is the 
average of the potential at 𝑥𝑥 + 𝑉𝑉 and 𝑥𝑥 − 𝑉𝑉 

𝑉𝑉 𝑥𝑥,𝑦𝑦 =
1
2
𝑉𝑉 𝑥𝑥 + 𝑉𝑉 + 𝑉𝑉(𝑥𝑥 − 𝑉𝑉)  

As a result, V(𝑥𝑥) cannot have local maxima or minima; the extreme values 
of V(𝑥𝑥) must occur at the end points. 

Laplace’s Equation in one dimension 
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Laplace’s Equation (Solutions without solving it) 

First Uniqueness Theorem: The solution to Laplace’s 
Equation in some volume V  is uniquely determined if 
V is specified on the boundary surface S.  

Proof: Suppose V1 and V2 are two distinct solutions to Laplace’s equation 
within volume V         with the same value on the boundary surface S.  

𝛻𝛻2V1 = 0 𝛻𝛻2V2 = 0 and 

V3 ≡ V1 − V2 𝛻𝛻2V3 = 𝛻𝛻2 V1 − V2 = 𝛻𝛻2V1 − 𝛻𝛻2V2 = 0 
V3 also satisfies Laplaces’s equation. 

What is the value of V3 at the boundary surface S  ? 

0 (Because at the boundary, V1 = V2. Hence, V3 = V1 − V2=0) 

But Laplace’s equation does not allow for any local extrema.  

So, since V3 = 0 at the boundary, V3 must be 0 everywhere.  

Hence V1 = V2 QED 9 
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Ex. 3.1 (Griffiths, 3rd Ed. ): What is the potential 
inside an enclosure with no charge and surrounded 
completely by a conducting material?  

Potential on the cavity-wall is a constant V = V0. 

Note 1: V = V0 is a solution of the Laplaces’s equation inside the cavity  

Note 2: V = V0 satisfies the conditions on the boundary surface. 

Therefore, V = V0 must be the solution of the problem. 



Laplace’s Equation (Solutions without solving it) 
Corollary to First Uniqueness Theorem: The potential in a volume 
is uniquely determined if (a) the charge desity throughout the 
region and (b) the value of V at all boundaries, are specified.  

Proof: Suppose V1 and V2 are two distinct solutions to Poisson’s 
equation in a region with volume V         and charge density 𝜌𝜌. V1 and V2  
have the same value at the boundary surface S.  

𝛻𝛻2V1 = −
𝜌𝜌
𝜖𝜖0

 and 

V3 ≡ V1 − V2 𝛻𝛻2V3 = 𝛻𝛻2 V1 − V2 = 𝛻𝛻2V1 − 𝛻𝛻2V2 = 0 

V3 satisfies Laplaces’s equation. 

What is the value of V3 at the boundary surface S  ? 

0 (Because at the boundary, V1 = V2. Hence, V3 = V1 − V2=0) 

But Laplace’s equation does not allow for any local extrema.  

So, if V3 = 0 at the boundary, it must be 0 everywhere.  

Hence V1 = V2 

𝛻𝛻2V2 = −
𝜌𝜌
𝜖𝜖0

 

QED 11 



Laplace’s Equation (Solutions without solving it) 
Second Uniqueness Theorem: In a volume V  
surrounded by conductors and containing a 
specified charge density 𝜌𝜌, the electric field is 
uniquely determined if  the total charge on each 
conductor is given.  

𝛁𝛁 ⋅ 𝐄𝐄𝟏𝟏 =
𝜌𝜌
𝜖𝜖0

 

Proof: Suppose 𝐄𝐄𝟏𝟏 and 𝐄𝐄𝟐𝟐 are two distinct 
electric fields satisfying the above conditions. 

𝛁𝛁 ⋅  𝐄𝐄𝟐𝟐 =
𝜌𝜌
𝜖𝜖0

 and 

𝐄𝐄𝟑𝟑 ≡ 𝐄𝐄𝟏𝟏 − 𝐄𝐄𝟐𝟐 

(Gauss’s law in space between the conductors) 

� 𝐄𝐄𝟏𝟏 ⋅ 𝑑𝑑𝐚𝐚
 

Si

=
𝑄𝑄𝑖𝑖

𝜖𝜖0
 � 𝐄𝐄𝟐𝟐 ⋅ 𝑑𝑑𝐚𝐚

 

Si

=
𝑄𝑄𝑖𝑖

𝜖𝜖0
 and 

(for Gaussian surface 
enclosing ith  conductor) 

� 𝐄𝐄𝟏𝟏 ⋅ 𝑑𝑑𝐚𝐚
 

S
=
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑉𝑉𝑉𝑉

𝜖𝜖0
 � 𝐄𝐄𝟐𝟐 ⋅ 𝑑𝑑𝐚𝐚

 

S
=
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑉𝑉𝑉𝑉

𝜖𝜖0
 and (for Gaussian surface 

enclosing all conductors) 

𝛁𝛁 ⋅  𝐄𝐄𝟑𝟑 = 𝛁𝛁 ⋅ 𝐄𝐄𝟏𝟏 − 𝐄𝐄𝟐𝟐 = 0 � 𝐄𝐄𝟑𝟑 ⋅ 𝑑𝑑𝐚𝐚
 

Si

= 0 
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Laplace’s Equation (Solutions without solving it) 

Proof: 
We know, V3 as well as V1 and V2 are all 
constants over a conducting surface 
𝛁𝛁 ⋅ (V3𝐄𝐄𝟑𝟑) = V3(𝛁𝛁 ⋅ 𝐄𝐄𝟑𝟑) + 𝐄𝐄𝟑𝟑 ⋅ (𝛁𝛁V3)   ( Using 𝛁𝛁 ⋅  𝐄𝐄𝟑𝟑 = 0   &  𝐄𝐄𝟑𝟑 = −𝛁𝛁𝑉𝑉3) 

(Applying divergence theorem) 

= − 𝐸𝐸3 2 

(Integrating over the entire volume) � 𝛁𝛁 ⋅ (V3𝐄𝐄𝟑𝟑)𝑑𝑑𝑑𝑑
 

V
= −� 𝐸𝐸3 2

 

V
𝑑𝑑𝑑𝑑 

� V3𝐄𝐄𝟑𝟑 ⋅ 𝑑𝑑𝐚𝐚
 

S
= −� 𝐸𝐸3 2

 

V
𝑑𝑑𝑑𝑑 

V3 � 𝐄𝐄𝟑𝟑 ⋅ 𝑑𝑑𝐚𝐚
 

S
= −� 𝐸𝐸3 2

 

V
𝑑𝑑𝑑𝑑 (Since V3 is a constant on the outer boundary S) 

0 = −� 𝐸𝐸3 2
 

V
𝑑𝑑𝑑𝑑 𝐸𝐸3 = 0 (everywhere) �  

�  𝐄𝐄𝟏𝟏 = 𝐄𝐄𝟐𝟐 QED 
(Since ∮ 𝐄𝐄𝟑𝟑 ⋅ 𝑑𝑑𝐚𝐚

 
Si

= 0) 
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Second Uniqueness Theorem: In a volume V  
surrounded by conductors and containing a 
specified charge density 𝜌𝜌, the electric field is 
uniquely determined if  the total charge on each 
conductor is given.  



Laplace’s Equation (Solutions without solving it) 

Comments on Uniqueness theorem: 

• If certain conditions are fulfilled, the Uniqueness theorems guarantee 
that the solution is unique.  

• Even if a solution is obtained by mere guess or intuition that satisfies 
all the necessary conditions, it must be the unique solution. 

• Uniqueness theorems do not directly help solve Laplace’s or Poisson’s 
equation. They help establish that the solution is unique. 
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