Department of Physics

IIT Kanpur, Semester II, 2017-18
\qquad

Problem 1: The separation vector can be written as $\mathbf{R}=\left(x-x^{\prime}\right) \hat{\mathbf{x}}+\left(y-y^{\prime}\right) \hat{\mathbf{y}}+\left(z-z^{\prime}\right) \hat{\mathbf{z}}$. If $R=|\mathbf{R}|$ is the magnitude of the separation vector, calculate the gradient $\boldsymbol{\nabla} R$. (2.5 Marks)

Problem 2: Consider a hemispherical bowl of radius R. A charge q is placed at a distance a from the center of the bowl as shown in the figure. Calculate the total electric flux through the hemispherical surface. (2.5 Marks)

Problem 3: Two spheres, each of radius R and carrying charge densities $+\rho$ and $-\rho$, respectively, are placed so that they partially overlap. Call the vector from the positive center to the negative center \mathbf{d}. Find the field at a point A midway between the centers in the overlap region. (2.5 Marks)

Problem 4: Consider two concentric spherical shells, of inner and outer radii a and b, respectively. Suppose the inner one carries a charge q, and the outer one a charge $-q$ (both of them uniformly distributed over the surface). Calculate the energy of this configuration. (2.5 Marks)

