
Department of Physics
IIT Kanpur, Semester II, 2017-18

PHY103A: Physics II Solutions # 1 Instructors: AKJ & SC

Solution 1.1:

(a) At the top of the hill, the gradient of the height function should be zero, that is, ∇h(x, y) = 0. This gives

∂

∂x
h(x, y)x̂ +

∂

∂y
h(x, y)ŷ =

h(x, y)

60

[
(2y − 6x− 18)x̂ + (2x− 8y + 28)ŷ

]
= 0,

Or,

2y − 6x− 18 = 0 and 2x− 8y + 28 = 0.

Solving these two equations we get x = −2 and y = 3. Thus the top of the hill is located at x = −2 and y = 3.

(b) The height of a hill is defined as the height of its top, which for the given hill is located at x = −2 and y = 3.
Therefore the height of the hill is h(−2, 3) = e11/12 ' 2.5.

(c) The steepest slope at any point is in the direction of the gradient ∇h(x, y). Now, the gradient vector at (1, 1) is

∇h(x, y)
∣∣∣
1,1

= h(1, 1)(22/60)(−x̂+ ŷ). The direction of this gradient vector is given by tan θ = −1, or θ = 135 ◦.

Therefore the slope is steepest in the direction θ = 135 ◦.

(d) The slope of h(x, y) at (1,1) in the direction n is ∇h(1, 1) · n = h(1, 1)(22/60)(−x̂ + ŷ) · (x̂ + ŷ) = 0.

Solution 1.2:
We have the magnitude of the separation vector given as

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2.

Therefore the gradient is

∇R =
[ ∂
∂x

x̂ +
∂

∂y
ŷ +

∂

∂z
ẑ
]√

(x− x′)2 + (y − y′)2 + (z − z′)2

=
(x− x′)x̂ + (y − y′)ŷ + (z − z′)ẑ√

(x− x′)2 + (y − y′)2 + (z − z′)2
=

R

R
.

Thus we see that the gradient is just a unit vector parallel to R.

Solution 1.3:
We have ∇φ = (2xy+ z3)x̂+x2ŷ+ 3xz2ẑ. Using the definition of gradient in the cartesian coordinates system and

equating the two sides of the equation, we get

∂φ(x, y, z)

∂x
= 2xy + z3,

∂φ(x, y, z)

∂y
= x2,

∂φ(x, y, z)

∂z
= 3xz2.
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Integrating the above equations yeilds

φ(x, y, z) = x2y + xz3 + f(y, z)

φ(x, y, z) = x2y + g(x, z)

φ(x, y, z) = xz3 + h(x, y),

where f(y, z), g(x, z) and h(x, y) are arbitrary functions. Choose, f(y, z) = 0, g(x, z) = xz3 and h(x, y) = x2y. The
scaler function is

φ(x, y, z) = x2y + xz3 + constant.

We note that the scalar function in this case can only be obtained up to a constant. Also, by taking the gradient of
this scalar function, we can verify our result.

Solution 1.4:

∇ ln |r| =

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)
ln[
√
x2 + y2 + z2] =

xx̂ + yŷ + zẑ

x2 + y2 + z2
=

r

r2
.

∇ 1

|r|
=

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)
1√

x2 + y2 + z2
=
−xx̂− yŷ − zẑ

(x2 + y2 + z2)3/2
= − r

r3
. (1)

Solution 1.5:

(a)

∇ ·
(

r̂

rn

)
= ∇ ·

(
xx̂+ yŷ + zẑ

(x2 + y2 + z2)1/2
1

(x2 + y2 + z2)n/2

)
=

∂

∂x

[ x

(x2 + y2 + z2)
n+1
2

]
+

∂

∂y

[ y

(x2 + y2 + z2)
n+1
2

]
+

∂

∂z

[ z

(x2 + y2 + z2)
n+1
2

]
=

1− x2(n+ 1)(x2 + y2 + z2)−1

(x2 + y2 + z2)
n+1
2

+
1− y2(n+ 1)(x2 + y2 + z2)−1

(x2 + y2 + z2)
n+1
2

+
1− z2(n+ 1)(x2 + y2 + z2)−1

(x2 + y2 + z2)
n+1
2

=
3− (x2 + y2 + z2)(n+ 1)(x2 + y2 + z2)−1

(x2 + y2 + z2)
n+1
2

=
3− n+ 1

(x2 + y2 + z2)
n+1
2

=
2− n
rn+1

.

(b) For n 6= 2, ∇·(r̂/rn) decreases with r and tends to zero as r approaches infinity. However, for n = 2, ∇·(r̂/r2) = 0
everywhere except at r = 0. As we see in the above equation, the divergence at r = 0 is of type 0/0 and is
therefore not defined. So, we cannot use the above result for calculating divergence at r = 0. The divergence
∇ · (r̂/r2) at r = 0 can be calculated by use of Gauss’s theorem and in fact can be shown to be infinity.
Mathematically, the divergence in this case can be represented as the Dirac-delta function: ∇ · (r̂/r2) = 4πδ3(r).

(c) One example of the vector-fields of type E = r̂/r2 is the electric field due to a point charge. Therefore, this type
of vector fields are very relevant in electrodynamics.
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Solution 1.6: We have ∇×E = −∂B
∂t

. Taking the curl on both sides, we get

∇× (∇×E) = − ∂

∂t
(∇×B)

or, ∇(∇ ·E)−∇2E = −∂
2E

∂t2

or, ∇2E =
∂2E

∂t2
since ∇ ·E = 0.

Similarly, one can show that ∇2B =
∂2B

∂t2
since ∇ ·B = 0.

The above two equations are known as the wave-equations and they describe the propagation of electromagnetic
fields in vacuum.

Solution 1.7:
We have v = (xy)x̂ + (2yz)ŷ + (3zx)ẑ. Stokes theorem says∫

(∇× v) · da =

∮
v · dl.

For this problem the area integral needs to be calculated over the shaded region and the line integral needs to be
calculated along the closed path consisting of three line segments, as indicated in Fig. 1.

y

x

z
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FIG. 1:

Let us first calculate the left hand side of the above equation. We have

∇× v =

(
∂vz
∂y
− ∂vy

∂z

)
x̂ +

(
∂vx
∂z
− ∂vz

∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ = (0− 2y)x̂ + (0− 3z)ŷ + (0− x)ẑ

Therefore, ∫
(∇× v) · da =

∫ 2

y=0

∫ 2−y

z=0

(−2yx̂− 3zŷ − xẑ) · dydzx̂

=

∫ 2

y=0

∫ 2−y

z=0

−2ydydz =

∫ 2

y=0

−2y(2− y)dy =

[
2y3

3
− 2y2

]2
0

= −8

3
(2)
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We now calculate the line integral along the three line segments.

(i) x = z = 0; v · dl = 0;

∫
v · dl = 0

(ii) x = 0, z = 2− y; v · dl = 2yzdy;

∫
v · dl =

∫ 0

2

2yzdy =

∫
v · dl =

∫ 0

2

2y(2− y)dy = −8

3

(iii) x = y = 0; v · dl = 0;

∫
v · dl = 0

Therefore, we have ∮
v · dl = 0− 8

3
+ 0 = −8

3
(3)

Comparing equations (2) and (3), we verify the Stoke’s theorem.

Solution 1.8: We need to verify the divergence theorem, which says that∫
(∇ · v)dτ =

∮
v · da.
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FIG. 2:

For the given problem, the volume integral needs to be performed over the octant of the sphere and the area
integral needs to be calculated over the four surfaces that completely surround the octant. Let us first calculate the
volume integral. We have v = r2 cos θr̂+ r2 cosφθ̂− r2 cos θ sinφφ̂. We use the formula for divergence in the spherical
coordinate system:

∇ · v =
1

r2
∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂

∂φ
(vφ)

=
1

r2
∂

∂r
(r2r2 cos θ) +

1

r sin θ

∂

∂θ
(sin θr2 cosφ) +

1

r sin θ

∂

∂φ
(−r2 cos θ sinφ)

=
1

r2
(4r3 cos θ) +

1

r sin θ
(cos θr2 cosφ) +

1

r sin θ
(−r2 cos θ cosφ)

= 4r cos θ

Substituting the above expression for divergence in the volume integral, we get∫
(∇ · v)dτ =

∫
(4r cos θ)r2 sin θdrdθdφ
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We need to integrate the volume integral over the octant of the sphere as shown in Fig 2. We therefore get,∫
(∇ · v)dτ = 4

∫ R

0

r3dr

∫ π/2

0

cos θ sin θdθ

∫ π/2

0

dφ

= 4
R4

4
× 1

2
× π

2
=
πR4

4
(4)

The area surrounding the octant consists of four surfaces and thus we need to calculate the area integrals separately
over these four surfaces:

(i) The surface in the x − y plane: da = r sin θdrdφθ̂; v · da = (r2 cosφ)r sin θdrdφ. But θ = π/2. Therefore, we
have ∫

v · da =

∫
r3 cosφdrdφ =

∫ R

0

r3dr

∫ π/2

0

cosφdφ =
R4

4

(ii) The surface in the y − z plane: da = rdrdθφ̂; v · da = (−r2 cos θ sinφ)rdrdθ. But φ = π/2. Therefore, we have∫
v · da = −

∫
r3 cos θdrdθ = −

∫ R

0

r3dr

∫ π/2

0

cos θdθ = −R
4

4
× 1 = −R

4

4

(iii) The surface in the x − z plane: da = −rdrdθφ̂; v · da = (−r2 cos θ sinφ)(−rdrdθ). But φ = 0. Therefore, we
have ∫

v · da =

∫
0 · da = 0

(iv) The spherical curved surface: da = r2 sin θdθdφr̂; v · da = (r2 cos θ)(r2 sin θdθdφ). But r = R. Therefore, we
have ∫

v · da =

∫
(R2 cos θ)(R2 sin θdθdφ) = R4

∫ π/2

0

cos θ sin θdθ

∫ π/2

0

dφ = R4 × 1

2
× π

2
=
πR4

4
.

Therefore, we have ∮
v · da =

R4

4
− R4

4
+ 0 +

πR4

4
=
πR4

4
(5)

Comparing equations (4) and (5), we verify the divergence theorem.
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