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Solution 2.1: Divergence theorem in cylindrical coordinates
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(a) Let us write the field as V = V,§ + V¢g£ + V,z. The formula for divergence in the cylindrical coordinates can then
be written as:
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Using the above formula, we get

V-V= é% (ss(2+sin® ¢)) + 7%(ssin¢cos¢) + %(32’)
= §2s(2 +sin? ¢) + és(cos ¢ —sin? ) + 3
=44 2sin? ¢ + cos® p —sin® ¢ + 3
=4+sin®¢p+cos?’p+3=8 (1)

(b) The divergence theorem that we need to verify in this case is

/ (V- V)dr = V. da.
vol surf

Let us first calculate the volume integral
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The surface integral has contributions due to the five surfaces shown in Fig. (?7).

(i) z = da = sdsdpz; V -da = 3zsdsd¢ = 15sdsdp; [V -da=15 f fﬂ/z sdsdgp = 157
(i) z = = —sdsd¢z; V-da= —3zsdsdp=0; [V -da=0
(iii) ¢ = /2 da = dsdzd; V -da = ssin ¢ cos ¢dsdz = 0; JV.da=
(iv) ¢ = da = —dsdz¢; V -da= —ssin¢cosddsdz = 0; JV-da=0



v) s = 2: da = sdpdz8; V-da = s(2+sin? ¢)sdodz = 4(2-+sin? ¢)dodz: [V-da=4 [7? [° (24sin®)dpdz =
=0 Jz=0
4 x (r+m/4) x5 =257
Therefore, adding all the five contribution, we get

?{V~da:157r+257r:407r (2)

Thus, comparing Eqs. 77 and 77, we have verified the divergence theorem.

(¢) The formula for curl in the cylindrical coordinate is
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The curl for the given vector is then
119 5 - 9 s sq |2 )~ Laalar L2 2 _ 92 2 o) 2
VxV= 56¢(3Z) 8Z(ssnubcosqﬁ)} s+ [823(2+sm ®) 65(3,2)} o+ - {85(8 sin ¢ cos ¢) 8¢(8(2+Slﬂ )|z

1
= ;(25 sin ¢ cos ¢ — $2sin ¢ cos P)z
=0

Solution 2.2: Applications of the Dirac delta function

(a) The electric charge density p(r) of a point charge ¢ at r’ can be written as p(r) = ¢6%(r —r’). This can be verified
by taking the volume integral: [ p(r)dr =q [ 63(r — v')dr = q.

(b) The electric charge density in this case can be written as: p(r) = ¢d3(r — a) — ¢63(r)

(¢) The electric charge density of a uniform, infinitesimally thin spherical shell of radius R and total charge @ is
p(r) = Ad(r — R). Please note this is just a one-dimensional Dirac delta function. In the two other dimensions,
¢ and z, the charge density is not zero. We find A by requiring that the total charge is @, that is,

/pdT = A///é(r — R)r? sin 0drdfd¢ = A47r/ §(r — R)yr*dr = A x 4rR* = Q
r=0
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Therefore, we have A =

Solution 2.3: Calculating charge density given an Electric field

To find the charge density from a given field, we need to use the divergence theorem: V - E = p/¢p. For the given
field we have

A B
> == + T—Q(—singb) = T%(A—Bsind)).
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Therefore, the charge density is given by p = 6—g(A — Bsin¢)
r

Solution 2.4: Physical Electrostatic field

To determine whether a field is physical we need to check if V x E = 0.
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Thus, we find that only the second field can be a physical electrostatic field

Solution 2.5: Calculating electric field for a given charge distribution

(a) Let us draw the Gaussian surface as shown in Fig. ??(a). We thus have

}{E da=F x 4mr? = _ Qene _ léw?’k
€0 €0 3

Therefore, we have
1
E=—%
30 rt

(b) We calculate the electric field in the three regions by drawing appropriate Gaussian surfaces and then using

Gauss’s law:

(i) Qenc =0. SOE =0
4k

(ii)
]{E -da = E x 4mr?; Qene = / dr / / / 5 2sin Odrdfde = — (r — a)
€0 €0 60 r'=a J0=0 J ¢p= €0
enc k - ~
Therefore, § E - da = Qene = E=— (r 2a> f.
€0 €0 r
(iii)
enc 1 4 k
%E-da:Exélm*Q Qene _ de—/ / / — 1% sinBdrdfde = —— (b — a).
€0 €0 r'=a J0=0J ¢p= €0
Therefore, § E - da = Qene = E= k (b—2a> f.
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(¢) As shown in part (a), the field inside a uniformly charged sphere of charge density p is given by E =
Let us take ry and r_ to be the radius vectors to a point in the overlap region from the centers of the positively
and negatively charged sphere, respectively. The electric field in the overlap region is equal to the sum of the
electric fields due to the positively and negatively charged spheres. Thus the electric field Eqyerlap in the overlap

region is [See Fig. 77(c)]
p P P
= (ry —ry) = %d

Eoverlap = Lr—&- e
360 360 360
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Solution 2.6: Scalar and Vector Potentials

(a)

The curl of a vector v is defined as

Vixve (P2 0% gy (O Ov)g, (Ouy Ove
oy 0z 0z or )Y ox dy

Using this formula, we get,

V x vi = (0—6zz)% + (0+22)y + (32> — 0)z
Vxve=(0-2y)x+(0-32)y+ (0 —x)z

Vxvy=22—-22)%x4+0-0)y+ (2y —2y)z=0

Therefore the vector vz can be expressed as the gradient of a scalar.

The divergence of a vector vg is defined as

_ Ovy  Ovy,  Ov,
Vov=e Tay T

Using this formula, we get

Vvi=2r—-2x+0=0
V.-vy=y+22+3z
V. -vy=0+4+2z+2y
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Therefore the vector vy can be expressed as the curl of a vector A, that is, vi = V x A. We write the vector

as A = A, x + A,y + A.z. Therefore, we have

04. 04, _ ,
dy 0z
9A, 0A,
A
9A, A,
e oy

Choosing A, = 0, we get

0A, 3

—32%r = A, = —§x2z2 + f(y, 2)
0A

87; = 2xz= A, = —2°2+g(y, 2)

0A. 0A, _Of , g _ , of dg
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We may even choose f = g = 0, and thus the vector is A = —z2zy — %xzzz

gradient can be added to this vector without changing the curl

z. This vector is not unique. Any



Solution 2.7: Electric Potential

Let us consider the thin stripe on the hemisphere as shown in Fig. 7?7. Every point on this stripe is at equal distance
(R) from the center. Therefore, the potential Veenter at the center can be written as

w/2 ™

o 1 o oR
nter = 7 R?sin0dfdp = —— —27R* = —
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The potential Vi ener at pole can be written as

1 /2 orR2 [7/21
Voole = / % da = / / 732 sin 0dodep — 2278 / = sin 0df
dmeq dmeg Jy o= dmey Jo—o T

We have 7 = VR2 + R2 — 2R? cos ) = /2R\/1 — cos 6. Therefore,

2 /2 .
Vpolc:ﬂ/ 0 g~ TR (o T cos )\) R 1—0)= 2
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Thus Vpole — Veenter = ;(\/§ - 1)-
0

FIG. 3:



