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Solution 2.1: Divergence theorem in cylindrical coordinates
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(a) Let us write the field as V = Vsŝ + Vφφ̂+ Vz ẑ. The formula for divergence in the cylindrical coordinates can then
be written as:

∇ ·V =
1

s

∂

∂s
(sVs) +

1

s

∂Vφ
∂φ

+
∂Vz
∂z

Using the above formula, we get

∇ ·V =
1

s

∂

∂s

(
ss(2 + sin2 φ)

)
+

1

s

∂

∂φ
(s sinφ cosφ) +

∂

∂z
(3z)

=
1

s
2s(2 + sin2 φ) +

1

s
s(cos2 φ− sin2 φ) + 3

= 4 + 2 sin2 φ+ cos2 φ− sin2 φ+ 3

= 4 + sin2 φ+ cos2 φ+ 3 = 8 (1)

(b) The divergence theorem that we need to verify in this case is∫
vol

(∇ ·V)dτ =

∮
surf

V · da.

Let us first calculate the volume integral∫
(∇ ·V)dτ =

∫ 2

s=0

∫ π/2

φ=0

∫ 5

z=0

8sdsdφdz = 8× 2× π

2
× 5 = 40π

The surface integral has contributions due to the five surfaces shown in Fig. (??).

(i) z = 5; da = sdsdφẑ; V · da = 3zsdsdφ = 15sdsdφ;
∫

V · da = 15
∫ 2

s=0

∫ π/2
φ=0

sdsdφ = 15π

(ii) z = 0; da = −sdsdφẑ; V · da = −3zsdsdφ = 0;
∫

V · da = 0

(iii) φ = π/2; da = dsdzφ̂; V · da = s sinφ cosφdsdz = 0;
∫

V · da = 0

(iv) φ = 0; da = −dsdzφ̂; V · da = −s sinφ cosφdsdz = 0;
∫

V · da = 0
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(v) s = 2; da = sdφdzŝ; V·da = s(2+sin2 φ)sdφdz = 4(2+sin2 φ)dφdz;
∫

V·da = 4
∫ π/2
φ=0

∫ 5

z=0
(2+sinφ)dφdz =

4× (π + π/4)× 5 = 25π

Therefore, adding all the five contribution, we get∮
V · da = 15π + 25π = 40π (2)

Thus, comparing Eqs. ?? and ??, we have verified the divergence theorem.

(c) The formula for curl in the cylindrical coordinate is

∇×V =

[
1

s

∂Vz
∂φ
− ∂Vφ

∂z

]
ŝ +

[
∂Vs
∂z
− ∂Vz

∂s

]
φ̂+

1

s

[
∂

∂s
(sVφ)− ∂Vs

∂φ

]
ẑ

The curl for the given vector is then

∇×V =

[
1

s

∂

∂φ
(3z)− ∂

∂z
(s sinφ cosφ)

]
ŝ +

[
∂

∂z
s(2 + sin2 φ)− ∂

∂s
(3z)

]
φ̂+

1

s

[
∂

∂s
(s2 sinφ cosφ)− ∂

∂φ
(s(2 + sin2 φ))

]
ẑ

=
1

s
(2s sinφ cosφ− s2 sinφ cosφ)ẑ

= 0

Solution 2.2: Applications of the Dirac delta function

(a) The electric charge density ρ(r) of a point charge q at r′ can be written as ρ(r) = qδ3(r− r′). This can be verified
by taking the volume integral:

∫
ρ(r)dτ = q

∫
δ3(r− r′)dτ = q.

(b) The electric charge density in this case can be written as: ρ(r) = qδ3(r− a)− qδ3(r)

(c) The electric charge density of a uniform, infinitesimally thin spherical shell of radius R and total charge Q is
ρ(r) = Aδ(r − R). Please note this is just a one-dimensional Dirac delta function. In the two other dimensions,
φ and z, the charge density is not zero. We find A by requiring that the total charge is Q, that is,∫

ρdτ = A

∫∫∫
δ(r −R)r2 sin θdrdθdφ = A4π

∫ ∞
r=0

δ(r −R)r2dr = A× 4πR2 = Q

Therefore, we have A =
Q

4πR2
.

Solution 2.3: Calculating charge density given an Electric field

To find the charge density from a given field, we need to use the divergence theorem: ∇ ·E = ρ/ε0. For the given
field we have

∇ ·E =
1

r2
∂

∂r
(r2(A/r)) + 0 +

1

r sin θ

∂

∂φ

(
B sin θ cosφ

r

)
=
A

r2
+
B

r2
(− sinφ) =

1

r2
(A−B sinφ).

Therefore, the charge density is given by ρ =
ε0
r2

(A−B sinφ)

Solution 2.4: Physical Electrostatic field

To determine whether a field is physical we need to check if ∇×E = 0.
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(a)

∇×E =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

xy 2yz 3zx

∣∣∣∣∣∣ = (0− 2y)x̂ + (0− 3z)ŷ + (0− x)ẑ 6= 0

(b)

∇×E =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
y2 2xy + z2 2yz

∣∣∣∣∣∣∣ = (2z − 2z)x̂ + (0− 0)ŷ + (2y − 2y)ẑ = 00

Thus, we find that only the second field can be a physical electrostatic field.

Solution 2.5: Calculating electric field for a given charge distribution

(a) Let us draw the Gaussian surface as shown in Fig. ??(a). We thus have∮
E · da = E × 4πr2 =

Qenc
ε0

=
1

ε0

4

3
πr3k

Therefore, we have

E =
1

3ε0
krr̂

(b) We calculate the electric field in the three regions by drawing appropriate Gaussian surfaces and then using
Gauss’s law:

(i) Qenc = 0. So E = 0

(ii) ∮
E · da = E × 4πr2;

Qenc
ε0

=
1

ε0

∫
ρdτ =

1

ε0

∫ r

r′=a

∫ π

θ=0

∫ 2π

φ=0

k

r′2
r′2 sin θdrdθdφ =

4πk

ε0
(r − a)

Therefore,
∮

E · da =
Qenc
ε0

⇒ E =
k

ε0

(
r − a
r2

)
r̂.

(iii) ∮
E · da = E × 4πr2

Qenc
ε0

=
1

ε0

∫
ρdτ =

1

ε0

∫ b

r′=a

∫ π

θ=0

∫ 2π

φ=0

k

r′2
r′2 sin θdrdθdφ =

4πk

ε0
(b− a).

Therefore,
∮

E · da =
Qenc
ε0

⇒ E =
k

ε0

(
b− a
r2

)
r̂.

(c) As shown in part (a), the field inside a uniformly charged sphere of charge density ρ is given by E =
ρr

3ε0
r̂ =

ρ

3ε0
r.

Let us take r+ and r− to be the radius vectors to a point in the overlap region from the centers of the positively
and negatively charged sphere, respectively. The electric field in the overlap region is equal to the sum of the
electric fields due to the positively and negatively charged spheres. Thus the electric field Eoverlap in the overlap
region is [See Fig. ??(c)]

Eoverlap =
ρ

3ε0
r+ −

ρ

3ε0
r− =

ρ

3ε0
(r+ − r+) =

ρ

3ε0
d
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Solution 2.6: Scalar and Vector Potentials

(a) The curl of a vector v is defined as

∇× v =

(
∂vz
∂y
− ∂vy

∂z

)
x̂ +

(
∂vx
∂z
− ∂vz

∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ

Using this formula, we get,

∇× v1 = (0− 6xz)x̂ + (0 + 2z)ŷ + (3z2 − 0)ẑ

∇× v2 = (0− 2y)x̂ + (0− 3z)ŷ + (0− x)ẑ

∇× v3 = (2z − 2z)x̂ + (0− 0)ŷ + (2y − 2y)ẑ = 0

Therefore the vector v3 can be expressed as the gradient of a scalar.

(b) The divergence of a vector v3 is defined as

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

Using this formula, we get

∇ · v1 = 2x− 2x+ 0 = 0

∇ · v2 = y + 2z + 3x

∇ · v3 = 0 + 2x+ 2y

Therefore the vector v1 can be expressed as the curl of a vector A, that is, v1 = ∇ ×A. We write the vector
as A = Axx̂ +Ayŷ +Az ẑ. Therefore, we have

∂Az
∂y
− ∂Ay

∂z
= x2

∂Ax
∂z
− ∂Az

∂x
= 3z2x

∂Ay
∂x
− ∂Ax

∂y
= −2xz

Choosing Ax = 0, we get

∂Az
∂x

= −3z2x⇒ Az = −3

2
x2z2 + f(y, z)

∂Ay
∂x

= −2xz ⇒ Ay = −x2z + g(y, z)

∂Az
∂y
− ∂Ay

∂z
=
∂f

∂y
+ x2 − ∂g

∂z
= x2 ⇒ ∂f

∂y
− ∂g

∂z
= 0

We may even choose f = g = 0, and thus the vector is A = −x2zŷ − 3
2x

2z2ẑ. This vector is not unique. Any
gradient can be added to this vector without changing the curl
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Solution 2.7: Electric Potential

Let us consider the thin stripe on the hemisphere as shown in Fig. ??. Every point on this stripe is at equal distance
(R) from the center. Therefore, the potential Vcenter at the center can be written as

Vcenter =
1

4πε0

∫
σ

R
da =

1

4πε0

σ

R

∫ π/2

θ=0

∫ 2π

φ=0

R2 sin θdθdφ =
1

4πε0

σ

R
2πR2 =

σR

2ε0

The potential Vcenter at pole can be written as

Vpole =
1

4πε0

∫
σ

r
da =

1

4πε0

∫ π/2

θ=0

∫ 2π

φ=0

σ

r
R2 sin θdθdφ =

σ2πR2

4πε0

∫ π/2

θ=0

1

r
sin θdθ

We have r =
√
R2 +R2 − 2R2 cos θ =

√
2R
√

1− cos θ. Therefore,

Vpole =
σ2πR2

4πε0
√

2R

∫ π/2

θ=0

sin θ√
1− cos θ

dθ =
σR

2
√

2ε0
(2
√

1− cos θ)
∣∣∣π/2
0

=
σR√
2ε0

(1− 0) =
σR√
2ε0

Thus Vpole − Vcenter =
σR

2ε0
(
√

2− 1).
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R
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r
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