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Solution 3.1: Finding potential, given a charge distribution (Griffiths 3rd ed. Prob 2.26)
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The potential V (a) at point a is given by (see Fig. 1)

V (a) =
1

4πε0

∫ √2h

0

(
σ2πx

r

)
dr

we have x = r/
√

2. Therefore we get,

V (a) =
2πσ

4πε0

∫ √2h

0

(
1√
2

)
dr =

2πσ
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1√
2

(
√

2h) =
σh

2ε0

The potential V (b) at point b is given by (see Fig. 1)

V (b) =
1

4πε0

∫ √2h

0

(
σ2πx

r′

)
dr

we have x = r/
√

2 and r′ =
√
h2 + r2 −

√
2hr. Therefore we get,

V (b) =
1

4πε0

∫ √2h

0

(
σ2πx

r′

)
dr =

2πσ

4πε0

1√
2

∫ √2h

0

(
r√
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√
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)
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=
σ

2
√
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[√
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√
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h√
2

ln

(
2

√
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√
2hr + 2r −

√
2h

)] ∣∣∣√2h

0

=
σ

2
√

2ε0

[
h+

h√
2

ln(2h+ 2
√

2h−
√

2h)− h− h√
2
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√
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]
=

σ

2
√
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h√
2

[
ln(2h+

√
2h)− ln(2h−

√
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]

=
σh

4ε0
ln

(
2 +
√

2

2−
√

2

)
=
σh

4ε0
ln

(
2 +
√

2

2−
√

2

)

=
σh

4ε0
ln

(
(2 +

√
2)2

2

)
=
σh

2ε0
ln
(

1 +
√

2
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Thus we get the required potential difference to be

V (a)− V (b) =
σh

2ε0

[
1− ln

(
1 +
√

2
)]
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Solution 3.2: Finding field and charge density, given an electric potential, (Griffiths 3rd ed. Prob 2.46)

(a) The electric potential is V (r) = A
e−λr

r
. Therefore, the electric field E(r) can be written as

E = −∇V = −A ∂

∂r

(
e−λr

r

)
r̂ = −A

[
r(−λ)e−λr − e−λr

r2

]
r̂

= Ae−λr(1 + λr)
r̂

r2

(b) The corresponding charge density ρ(r) can be calculated by using the differential form of Gauss’s Law ρ =
ε0∇ ·E. Using the product rule for divergence, ∇ · (fA) = f(∇ ·A) + A · (∇f), we obtain

ρ = ε0∇ ·E = ε0Ae
−λr(1 + λr)∇ ·

(
r̂

r2

)
+ ε0A

r̂

r2
·∇

[
e−λr(1 + λr)

]
Next we use the properties of the Dirac-delta function and the formula for gradient in spherical coordinates
to get

ε0Ae
−λr(1 + λr)∇ ·

(
r̂

r2

)
= ε0Ae

−λr(1 + λr)4πδ3(r) = ε0A4πδ3(r)

ε0A
r̂

r2
·∇

[
e−λr(1 + λr)

]
= ε0A

r̂

r2
· ∂
∂r

[
e−λr(1 + λr)

]
r̂

= ε0A
r̂

r2
·
[
−λe−λr(1 + λr) + e−λrλ

]
r̂

= ε0A
r̂

r2
·
[
−λ2re−λr

]
r̂

= −ε0A
λ2

r
e−λr

Therefore, we get the charge density ρ(r) as

ρ = ε0A

[
4πδ3(r)− λ2

r
e−λr

]
(c) The total charge Q can now be calculated to be

Q =

∫
ρdτ

= ε0A4π

∫
δ3(r)dτ − ε0Aλ2

∫ ∞
0

e−λr

r
4πr2dr

= ε0A4π − ε0Aλ24π

∫ ∞
0

re−λrdr

= ε0A4π − ε0Aλ24π

(
1

λ2

)
= 0

Therefore the total charge is zero.
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Solution 3.3: Verifying Poisson’s Equation (Griffiths 3rd ed. Prob 2.29)
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FIG. 2:

The potential V (r) at r due to the localized charge distribution is

V (r) =
1

4πε0

∫
ρ(r′)

r

dτ ′,

We note that the charge distribution has been represented in the (r′, θ′, φ′) coordinates. We take the Laplacian of the
potential in (r, θ, φ) coordinates. Therefore, we get

∇2V (r) = ∇2 1

4πε0

∫
ρ(r′)

r

dτ ′

=
1

4πε0

∫
∇2 ρ(r′)

r

dτ ′

=
1

4πε0

∫
ρ(r′)

(
∇2 1

r

)
dτ ′

=
1

4πε0

∫
ρ(r′)

(
∇ ·∇1

r

)
dτ ′

=
1

4πε0

∫
ρ(r′)

(
∇ · −r̂

r
2

)
dτ ′

=
1

4πε0

∫
−ρ(r′)4πδ3(r)dτ ′

=
1

4πε0

∫
−ρ(r′)4πδ3(r− r′)dτ ′

= − 1

ε0
ρ(r)

Thus, we see that the given potential satisfies the Poisson’s equation.
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Solution 3.4: Electrostatic energy of two spherical shells (Griffiths 3rd ed. Prob 2.34)

(a) The electric field due to the two shells is given by E(r) =
1

4πε0

q

r2
r̂, for (a < r < b), and E(r) = 0, otherwise.

The energy of this configuration is:

W =
ε0
2

∫
E2dτ =

ε0
2

(
q

4πε0

)2 ∫ b

a

(
1

r2

)2

4πr2dr =
q2

8πε0

(
1

a
− 1

b

)
(b) Let’s us first calculate the energy of the individual shells. The electric filed due to the shell of radius a is

Ea(r) =
1

4πε0

q

r2
r̂, for (r > a), and Ea(r) = 0, otherwise. The electric filed due to the shell of radius b is

Eb(r) = − 1

4πε0

q

r2
r̂, for (r > b), and Eb(r) = 0, otherwise. Therefore, the energy of the first spherical shell is:

Wa =
ε0
2

∫
E2
adτ =

ε0
2

(
q

4πε0

)2 ∫ ∞
a

(
1

r2

)2

4πr2dr =
q2

8πε0a

Similarly, the energy of the second spherical shell is

Wb =
ε0
2

∫
E2
bdτ =

ε0
2

(
q

4πε0

)2 ∫ ∞
b

(
1

r2

)2

4πr2dr =
q2

8πε0b

The interaction energy of this system is therefore:

Wint = ε0

∫
Ea ·Ebdτ = W −Wa −Wb = − q2

8πε0b
− q2

8πε0b

= − q2

4πε0b

Solution 3.5: Electrostatic Force

RQ

θ

z

da RQ

θ

z

dτ

(a) (b)

FIG. 3:

(a) The electric filed due to the metal sphere of radius R is given by E(r) =
1

4πε0

Q

r2
r̂, for (r ≥ R), and E(r) = 0,

otherwise. From the symmetry of the problem, it is clear that the total electrostatic force on northern
hemisphere will be in the z direction. Now, the electrostatic force per unit area in the z-direction at the area
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element da, as shown in Fig. 3(a), is:

fz = σEother · ẑ = σ
E(r)

2
· ẑ =

Q

4πR2

1

2

1

4πε0

Q

r2
cos θ =

Q2

32π2ε0R4
cos θ

Therefore, the total repulsive force on the northern hemisphere is

Fz =

∫
fzda =

∫ π/2

θ=0

∫ 2π

φ=0

(
Q2

32π2ε0R4
cos θ

)
R2 sin θdθdφ

=
Q2

32π2ε0R2
2π

∫ π/2

θ=0

cos θ sin θdθ

=
Q2

32π2ε0R2
2π

1

2

=
Q2

32πε0R2

(b) The electric filed inside a uniformly charged sphere of radius R and charge Q is given by E(r) =
1

4πε0

Qr

R3
r̂.

From the symmetry of the problem, it is clear that the total electrostatic force on the northern hemisphere will
be in the z direction. Now, the electrostatic force per unit volume in the z-direction on the volume element
dτ , as shown in Fig. 3(b), is:

fz = ρE(r) · ẑ =
3Q

4πR3

1

4πε0

Qr

R3
cos θ =

3Q2

16π2ε0R6
r cos θ

Therefore, the electrostatic force on the northern hemisphere is

Fz =

∫
fzdτ =

∫ R

0

∫ π/2

θ=0

∫ 2π

φ=0

(
3Q2

16π2ε0R6
r cos θ

)
r2 sin θdθdφ

=
3Q2

16π2ε0R6

∫ R

0

∫ π/2

θ=0

∫ 2π

φ=0

r3 cos θ sin θdθdφ

=
3Q2

16π2ε0R6

∫ R

0

r3dr

∫ π/2

θ=0

cos θ sin θdθ

∫ 2π

φ=0

dφ

=
3Q2

16π2ε0R6
× R4

4
× 1

2
× 2π

=
3Q2

64πε0R2

Solution 3.6: Capacitance of coaxial metal cylinders (Griffiths 3rd ed. Prob 2.39)

Suppose that for a length L, the charge on the inner cylinder is Q and the charge on the outer cylinder is −Q. Using

the Gaussian surface as shown in Fig. 4, it can be shown that the field in between the cylinders is E(s) =
Q

2πε0L

1

s
ŝ.

The potential difference between the cylinders is therefore,

V (b)− V (a) = −
∫ b

a

E · dl = − Q

2πε0L

∫ b

a

1

s
ds = − Q

2πε0L
ln

(
b

a

)
.

We see that a is at a higher potential. So, we take the potential difference as V = V (a)− V (b) =
Q

2πε0L
ln

(
b

a

)
. The
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capacitance C of this configuration is therefore given by

C =
Q

V
=

2πε0

ln

(
b

a

)
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FIG. 4:
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