Department of Physics
 IIT Kanpur, Semester II, 2017-18

Solution 3.1: Finding potential, given a charge distribution (Griffiths 3rd ed. Prob 2.26)

FIG. 1:
The potential $V(\mathbf{a})$ at point a is given by (see Fig. 1)

$$
V(\mathbf{a})=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{\sqrt{2} h}\left(\frac{\sigma 2 \pi x}{r}\right) d r
$$

we have $x=r / \sqrt{2}$. Therefore we get,

$$
V(\mathbf{a})=\frac{2 \pi \sigma}{4 \pi \epsilon_{0}} \int_{0}^{\sqrt{2} h}\left(\frac{1}{\sqrt{2}}\right) d r=\frac{2 \pi \sigma}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{2}}(\sqrt{2} h)=\frac{\sigma h}{2 \epsilon_{0}}
$$

The potential $V(\mathbf{b})$ at point \mathbf{b} is given by (see Fig. 1)

$$
V(\mathbf{b})=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{\sqrt{2} h}\left(\frac{\sigma 2 \pi x}{r^{\prime}}\right) d r
$$

we have $x=r / \sqrt{2}$ and $r^{\prime}=\sqrt{h^{2}+r^{2}-\sqrt{2} h r}$. Therefore we get,

$$
\begin{aligned}
V(\mathbf{b})= & \frac{1}{4 \pi \epsilon_{0}} \int_{0}^{\sqrt{2} h}\left(\frac{\sigma 2 \pi x}{r^{\prime}}\right) d r=\frac{2 \pi \sigma}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{2}} \int_{0}^{\sqrt{2} h}\left(\frac{r}{\sqrt{h^{2}+r^{2}-\sqrt{2} h r}}\right) d r \\
& =\left.\frac{\sigma}{2 \sqrt{2} \epsilon_{0}}\left[\sqrt{h^{2}+r^{2}-\sqrt{2} h r}+\frac{h}{\sqrt{2}} \ln \left(2 \sqrt{h^{2}+r^{2}-\sqrt{2} h r}+2 r-\sqrt{2} h\right)\right]\right|_{0} ^{\sqrt{2} h} \\
& =\frac{\sigma}{2 \sqrt{2} \epsilon_{0}}\left[h+\frac{h}{\sqrt{2}} \ln (2 h+2 \sqrt{2} h-\sqrt{2} h)-h-\frac{h}{\sqrt{2}} \ln (2 h-\sqrt{2} h)\right] \\
& =\frac{\sigma}{2 \sqrt{2} \epsilon_{0}} \frac{h}{\sqrt{2}}[\ln (2 h+\sqrt{2} h)-\ln (2 h-\sqrt{2} h)]=\frac{\sigma h}{4 \epsilon_{0}} \ln \left(\frac{2+\sqrt{2}}{2-\sqrt{2}}\right)=\frac{\sigma h}{4 \epsilon_{0}} \ln \left(\frac{2+\sqrt{2}}{2-\sqrt{2}}\right) \\
& =\frac{\sigma h}{4 \epsilon_{0}} \ln \left(\frac{(2+\sqrt{2})^{2}}{2}\right)=\frac{\sigma h}{2 \epsilon_{0}} \ln (1+\sqrt{2})
\end{aligned}
$$

Thus we get the required potential difference to be

$$
V(\mathbf{a})-V(\mathbf{b})=\frac{\sigma h}{2 \epsilon_{0}}[1-\ln (1+\sqrt{2})]
$$

Solution 3.2: Finding field and charge density, given an electric potential, (Griffiths 3rd ed. Prob 2.46)
(a) The electric potential is $V(\mathbf{r})=A \frac{e^{-\lambda r}}{r}$. Therefore, the electric field $\mathbf{E}(\mathbf{r})$ can be written as

$$
\begin{aligned}
\mathbf{E} & =-\nabla V=-A \frac{\partial}{\partial r}\left(\frac{e^{-\lambda r}}{r}\right) \hat{\mathbf{r}}=-A\left[\frac{r(-\lambda) e^{-\lambda r}-e^{-\lambda r}}{r^{2}}\right] \hat{\mathbf{r}} \\
& =A e^{-\lambda r}(1+\lambda r) \frac{\hat{\mathbf{r}}}{r^{2}}
\end{aligned}
$$

(b) The corresponding charge density $\rho(r)$ can be calculated by using the differential form of Gauss's Law $\rho=$ $\epsilon_{0} \boldsymbol{\nabla} \cdot \mathbf{E}$. Using the product rule for divergence, $\boldsymbol{\nabla} \cdot(f \mathbf{A})=f(\boldsymbol{\nabla} \cdot \mathbf{A})+\mathbf{A} \cdot(\boldsymbol{\nabla} f)$, we obtain

$$
\rho=\epsilon_{0} \boldsymbol{\nabla} \cdot \mathbf{E}=\epsilon_{0} A e^{-\lambda r}(1+\lambda r) \boldsymbol{\nabla} \cdot\left(\frac{\hat{\mathbf{r}}}{r^{2}}\right)+\epsilon_{0} A \frac{\hat{\mathbf{r}}}{r^{2}} \cdot \nabla\left[e^{-\lambda r}(1+\lambda r)\right]
$$

Next we use the properties of the Dirac-delta function and the formula for gradient in spherical coordinates to get

$$
\begin{aligned}
\epsilon_{0} A e^{-\lambda r}(1+\lambda r) \nabla \cdot\left(\frac{\hat{\mathbf{r}}}{r^{2}}\right) & =\epsilon_{0} A e^{-\lambda r}(1+\lambda r) 4 \pi \delta^{3}(\mathbf{r})=\epsilon_{0} A 4 \pi \delta^{3}(\mathbf{r}) \\
\epsilon_{0} A \frac{\hat{\mathbf{r}}}{r^{2}} \cdot \nabla\left[e^{-\lambda r}(1+\lambda r)\right] & =\epsilon_{0} A \frac{\hat{\mathbf{r}}}{r^{2}} \cdot \frac{\partial}{\partial r}\left[e^{-\lambda r}(1+\lambda r)\right] \hat{\mathbf{r}} \\
& =\epsilon_{0} A \frac{\hat{\mathbf{r}}}{r^{2}} \cdot\left[-\lambda e^{-\lambda r}(1+\lambda r)+e^{-\lambda r} \lambda\right] \hat{\mathbf{r}} \\
& =\epsilon_{0} A \frac{\hat{\mathbf{r}}}{r^{2}} \cdot\left[-\lambda^{2} r e^{-\lambda r}\right] \hat{\mathbf{r}} \\
& =-\epsilon_{0} A \frac{\lambda^{2}}{r} e^{-\lambda r}
\end{aligned}
$$

Therefore, we get the charge density $\rho(r)$ as

$$
\rho=\epsilon_{0} A\left[4 \pi \delta^{3}(\mathbf{r})-\frac{\lambda^{2}}{r} e^{-\lambda r}\right]
$$

(c) The total charge Q can now be calculated to be

$$
\begin{aligned}
Q & =\int \rho d \tau \\
& =\epsilon_{0} A 4 \pi \int \delta^{3}(\mathbf{r}) d \tau-\epsilon_{0} A \lambda^{2} \int_{0}^{\infty} \frac{e^{-\lambda r}}{r} 4 \pi r^{2} d r \\
& =\epsilon_{0} A 4 \pi-\epsilon_{0} A \lambda^{2} 4 \pi \int_{0}^{\infty} r e^{-\lambda r} d r \\
& =\epsilon_{0} A 4 \pi-\epsilon_{0} A \lambda^{2} 4 \pi\left(\frac{1}{\lambda^{2}}\right) \\
& =0
\end{aligned}
$$

Therefore the total charge is zero.

Solution 3.3: Verifying Poisson's Equation (Griffiths 3rd ed. Prob 2.29)

FIG. 2:
The potential $V(\mathbf{r})$ at \mathbf{r} due to the localized charge distribution is

$$
V(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\imath} d \tau^{\prime}
$$

We note that the charge distribution has been represented in the $\left(\mathbf{r}^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ coordinates. We take the Laplacian of the potential in $(\mathbf{r}, \theta, \phi)$ coordinates. Therefore, we get

$$
\begin{aligned}
\nabla^{2} V(\mathbf{r}) & =\nabla^{2} \frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\imath} d \tau^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int \nabla^{2} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\imath} d \tau^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int \rho\left(\mathbf{r}^{\prime}\right)\left(\nabla^{2} \frac{1}{\imath}\right) d \tau^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int \rho\left(\mathbf{r}^{\prime}\right)\left(\nabla \cdot \nabla \frac{1}{z}\right) d \tau^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int \rho\left(\mathbf{r}^{\prime}\right)\left(\nabla \cdot \frac{-\hat{\imath}}{\imath^{2}}\right) d \tau^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int-\rho\left(\mathbf{r}^{\prime}\right) 4 \pi \delta^{3}(\imath) d \tau^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int-\rho\left(\mathbf{r}^{\prime}\right) 4 \pi \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d \tau^{\prime} \\
& =-\frac{1}{\epsilon_{0}} \rho(\mathbf{r})
\end{aligned}
$$

Thus, we see that the given potential satisfies the Poisson's equation.

Solution 3.4: Electrostatic energy of two spherical shells (Griffiths 3rd ed. Prob 2.34)
(a) The electric field due to the two shells is given by $\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}$, for $(a<r<b)$, and $\mathbf{E}(\mathbf{r})=0$, otherwise. The energy of this configuration is:

$$
W=\frac{\epsilon_{0}}{2} \int E^{2} d \tau=\frac{\epsilon_{0}}{2}\left(\frac{q}{4 \pi \epsilon_{0}}\right)^{2} \int_{a}^{b}\left(\frac{1}{r^{2}}\right)^{2} 4 \pi r^{2} d r=\frac{q^{2}}{8 \pi \epsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

(b) Let's us first calculate the energy of the individual shells. The electric filed due to the shell of radius a is $\mathbf{E}_{a}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}$, for $(r>a)$, and $\mathbf{E}_{a}(\mathbf{r})=0$, otherwise. The electric filed due to the shell of radius b is $\mathbf{E}_{b}(\mathbf{r})=-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}$, for $(r>b)$, and $\mathbf{E}_{b}(\mathbf{r})=0$, otherwise. Therefore, the energy of the first spherical shell is:

$$
W_{a}=\frac{\epsilon_{0}}{2} \int E_{a}^{2} d \tau=\frac{\epsilon_{0}}{2}\left(\frac{q}{4 \pi \epsilon_{0}}\right)^{2} \int_{a}^{\infty}\left(\frac{1}{r^{2}}\right)^{2} 4 \pi r^{2} d r=\frac{q^{2}}{8 \pi \epsilon_{0} a}
$$

Similarly, the energy of the second spherical shell is

$$
W_{b}=\frac{\epsilon_{0}}{2} \int E_{b}^{2} d \tau=\frac{\epsilon_{0}}{2}\left(\frac{q}{4 \pi \epsilon_{0}}\right)^{2} \int_{b}^{\infty}\left(\frac{1}{r^{2}}\right)^{2} 4 \pi r^{2} d r=\frac{q^{2}}{8 \pi \epsilon_{0} b}
$$

The interaction energy of this system is therefore:

$$
\begin{aligned}
W_{\mathrm{int}} & =\epsilon_{0} \int \mathbf{E}_{\mathbf{a}} \cdot \mathbf{E}_{\mathbf{b}} d \tau=W-W_{a}-W_{b}=-\frac{q^{2}}{8 \pi \epsilon_{0} b}-\frac{q^{2}}{8 \pi \epsilon_{0} b} \\
& =-\frac{q^{2}}{4 \pi \epsilon_{0} b}
\end{aligned}
$$

Solution 3.5: Electrostatic Force

FIG. 3:
(a) The electric filed due to the metal sphere of radius R is given by $\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}} \hat{\mathbf{r}}$, for $(r \geq R)$, and $\mathbf{E}(\mathbf{r})=0$, otherwise. From the symmetry of the problem, it is clear that the total electrostatic force on northern hemisphere will be in the z direction. Now, the electrostatic force per unit area in the z-direction at the area
element $d a$, as shown in Fig. 3(a), is:

$$
f_{z}=\sigma \mathbf{E}_{\text {other }} \cdot \hat{\mathbf{z}}=\sigma \frac{\mathbf{E}(\mathbf{r})}{2} \cdot \hat{\mathbf{z}}=\frac{Q}{4 \pi R^{2}} \frac{1}{2} \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}} \cos \theta=\frac{Q^{2}}{32 \pi^{2} \epsilon_{0} R^{4}} \cos \theta
$$

Therefore, the total repulsive force on the northern hemisphere is

$$
\begin{aligned}
F_{z} & =\int f_{z} d a=\int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi}\left(\frac{Q^{2}}{32 \pi^{2} \epsilon_{0} R^{4}} \cos \theta\right) R^{2} \sin \theta d \theta d \phi \\
& =\frac{Q^{2}}{32 \pi^{2} \epsilon_{0} R^{2}} 2 \pi \int_{\theta=0}^{\pi / 2} \cos \theta \sin \theta d \theta \\
& =\frac{Q^{2}}{32 \pi^{2} \epsilon_{0} R^{2}} 2 \pi \frac{1}{2} \\
& =\frac{Q^{2}}{32 \pi \epsilon_{0} R^{2}}
\end{aligned}
$$

(b) The electric filed inside a uniformly charged sphere of radius R and charge Q is given by $\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q r}{R^{3}} \hat{\mathbf{r}}$. From the symmetry of the problem, it is clear that the total electrostatic force on the northern hemisphere will be in the z direction. Now, the electrostatic force per unit volume in the z-direction on the volume element $d \tau$, as shown in Fig. 3(b), is:

$$
f_{z}=\rho \mathbf{E}(\mathbf{r}) \cdot \hat{\mathbf{z}}=\frac{3 Q}{4 \pi R^{3}} \frac{1}{4 \pi \epsilon_{0}} \frac{Q r}{R^{3}} \cos \theta=\frac{3 Q^{2}}{16 \pi^{2} \epsilon_{0} R^{6}} r \cos \theta
$$

Therefore, the electrostatic force on the northern hemisphere is

$$
\begin{aligned}
F_{z} & =\int f_{z} d \tau=\int_{0}^{R} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi}\left(\frac{3 Q^{2}}{16 \pi^{2} \epsilon_{0} R^{6}} r \cos \theta\right) r^{2} \sin \theta d \theta d \phi \\
& =\frac{3 Q^{2}}{16 \pi^{2} \epsilon_{0} R^{6}} \int_{0}^{R} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} r^{3} \cos \theta \sin \theta d \theta d \phi \\
& =\frac{3 Q^{2}}{16 \pi^{2} \epsilon_{0} R^{6}} \int_{0}^{R} r^{3} d r \int_{\theta=0}^{\pi / 2} \cos \theta \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi \\
& =\frac{3 Q^{2}}{16 \pi^{2} \epsilon_{0} R^{6}} \times \frac{R^{4}}{4} \times \frac{1}{2} \times 2 \pi \\
& =\frac{3 Q^{2}}{64 \pi \epsilon_{0} R^{2}}
\end{aligned}
$$

Solution 3.6: Capacitance of coaxial metal cylinders (Griffiths 3rd ed. Prob 2.39)
Suppose that for a length L , the charge on the inner cylinder is Q and the charge on the outer cylinder is $-Q$. Using the Gaussian surface as shown in Fig. 4, it can be shown that the field in between the cylinders is $\mathbf{E}(\mathbf{s})=\frac{Q}{2 \pi \epsilon_{0} L} \frac{1}{s} \hat{\mathbf{s}}$. The potential difference between the cylinders is therefore,

$$
V(b)-V(a)=-\int_{a}^{b} \mathbf{E} \cdot d \mathbf{l}=-\frac{Q}{2 \pi \epsilon_{0} L} \int_{a}^{b} \frac{1}{s} d s=-\frac{Q}{2 \pi \epsilon_{0} L} \ln \left(\frac{b}{a}\right) .
$$

We see that a is at a higher potential. So, we take the potential difference as $V=V(a)-V(b)=\frac{Q}{2 \pi \epsilon_{0} L} \ln \left(\frac{b}{a}\right)$. The
capacitance C of this configuration is therefore given by

$$
C=\frac{Q}{V}=\frac{2 \pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}
$$

FIG. 4:

