Department of Physics
IIT Kanpur, Semester 1I, 2017-18

PHY103A: Physics IT Solution # 3 Instructors: AKJ & SC

Solution 3.1: Finding potential, given a charge distribution (Griffiths 3rd ed. Prob 2.26)

FIG. 1:

The potential V(a) at point a is given by (see Fig. 1)
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we have z = r/ /2. Therefore we get,
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The potential V(b) at point b is given by (see Fig. 1)
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we have x = r/v/2 and 7’ = \/h2? + r2 — \/2hr. Therefore we get,
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Thus we get the required potential difference to be

V(a) - V(b) = % (1= (1+v3)]



Solution 3.2: Finding field and charge density, given an electric potential, (Griffiths 3rd ed. Prob 2.46)
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(a) The electric potential is V(r) = As—. Therefore, the electric field E(r) can be written as
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(b) The corresponding charge density p(r) can be calculated by using the differential form of Gauss’s Law p =
€0V - E. Using the product rule for divergence, V- (fA) = f(V - A) + A - (Vf), we obtain
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Next we use the properties of the Dirac-delta function and the formula for gradient in spherical coordinates
to get
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Therefore, we get the charge density p(r) as
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(c) The total charge @ can now be calculated to be
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Therefore the total charge is zero.



Solution 3.3: Verifying Poisson’s Equation (Griffiths 3rd ed. Prob 2.29)
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FIG. 2:

The potential V(r) at r due to the localized charge distribution is
1 p(r’)
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We note that the charge distribution has been represented in the (r/,6’, ¢’) coordinates. We take the Laplacian of the
potential in (r, 8, ¢) coordinates. Therefore, we get
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Thus, we see that the given potential satisfies the Poisson’s equation.



Solution 3.4: Electrostatic energy of two spherical shells (Griffiths 3rd ed. Prob 2.34)
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(a) The electric field due to the two shells is given by E(r) = 4—%1", for (a < r < b), and E(r) = 0, otherwise.
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The energy of this configuration is:
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(b) Let’s us first calculate the energy of the individual shells. The electric filed due to the shell of radius a is
1
E.(r) = q f, for (r > a), and E,(r) = 0, otherwise. The electric filed due to the shell of radius b is
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Ey(r) = q t, for (r > b), and Ep(r) = 0, otherwise. Therefore, the energy of the first spherical shell is:
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Similarly, the energy of the second spherical shell is
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The interaction energy of this system is therefore:
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Solution 3.5: Electrostatic Force

(@) = 4 (b) = 4

FIG. 3:

1
(a) The electric filed due to the metal sphere of radius R is given by E(r) = 4—%?, for (r > R), and E(r) =0,
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otherwise. From the symmetry of the problem, it is clear that the total electrostatic force on northern
hemisphere will be in the z direction. Now, the electrostatic force per unit area in the z-direction at the area



element da, as shown in Fig. 3(a), is:
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Therefore, the total repulsive force on the northern hemisphere is
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(b) The electric filed inside a uniformly charged sphere of radius R and charge @ is given by E(r) = 1 g:
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From the symmetry of the problem, it is clear that the total electrostatic force on the northern hemisphere will
be in the z direction. Now, the electrostatic force per unit volume in the z-direction on the volume element
dr, as shown in Fig. 3(b), is:
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Therefore, the electrostatic force on the northern hemisphere is
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Solution 3.6: Capacitance of coaxial metal cylinders (Griffiths 3rd ed. Prob 2.39)

Suppose that for a length L, the charge on the inner cylinder is ) and the charge on the outer cylinder is —@Q. Using
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the Gaussian surface as shown in Fig. 4, it can be shown that the field in between the cylinders is E(s) = eI
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The potential difference between the cylinders is therefore,
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We see that a is at a higher potential. So, we take the potential difference as V =V (a) —V(b) = 5 @ Lln (> The
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capacitance C of this configuration is therefore given by




