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Solution 4.1: Force with image charges (Griffiths 3rd ed. Prob 3.6)

As far as force is concerned, this problem is the same if we remove the grounded conducting plate and simply put

an image charge +2q at z = —d and an image charge —q at z = —3d. Therefore, the force on the charge +¢q is given
by
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Solution 4.2: Infinite-line image charge (Griffiths 3rd ed. Prob 3.9)

This problem is an extension of the problem in which a point charge is placed above an infinite grounded conducting
plane. So, in order to obtain the correct potential, we need to put an infinite line charge —\ running parallel to the
x-axis at a distance —d from the z — y plane. (see Fig. 1).

FIG. 1:

(a) Let’s first find the potential at a point (y, z) on the y — z plane. Assume that the distance of the point (y, z)
from the top infinite line charge is given by the magnitude of the vector §; similarly the distance of the point
(y,z) from the bottom infinite line charge is given by the magnitude of the vector §_. Taking the potential
V =0 at x — y plane to be the reference, the potential due to top infinite line charge can be shown to be
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b) The induced charge density is given by ¢ = —eg——, where 0 is the vector in the direction perpendicular to
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the surface. In the present problem, i = z. Therefore,
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Solution 4.3: Far-field potential (Griffiths 3rd ed. Prob 3.26)

In this problem, a point r on the sphere is represented in the (r, 6, ¢) coordinates. An observation point rg is
represented in the (rg, 6o, o) coordinates. The angle between the vectors r and rg is represented by «. So, the
formula for multipole expansion of potential V' can be written as
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Now, since we are interested in observation points along z-axis only, the angle o between the two vectors in essentially
the angle 6. Therefore we can write the above expression as
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Let’s calculate the above potential term by term in the limit z > R.

1. Monopole term: We have
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The r-integral yields fOR(R —2r)dr = (Rr — rg)‘o = R? — R? = 0. Therefore, the monopole potential is zero:
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2. Dipole term: We have
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The 6-integral yields foﬂ sin? 0 cos 0df = 3 = g(0 —0) = 0. Therefore, the dipole potential is also zero:
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3. Quadrupole term: We have
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The three integrals can be calculated as follows:
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Therefore,
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So, the approximate potential is the potential of the quadrupole:
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Solution 4.4: Potential due to a four-charge system (Griffiths 3rd ed. Prob 3.27)

The total charge of the system is zero. So, the monopole term in the potential would be zero. Now, let’s calculate
the dipole term [see Fig. 2]. We have

p = (3ga — qa)z + (—2qa — 2q(—a))y = 2qaz
Therefore,
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FIG. 2:

Solution 4.5: Far-field Potential due to a spherical-charge distribution (Griffiths 3rd ed. Prob 3.28)

(a) From the symmetry in the problem it is clear that the net dipole moment will be in the z direction. Therefore
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(b) We find that the total charge of the system is zero. So, there will be no monopole contribution to the far-field
potential. However since the dipole moment is not zero, the first contribution will be from the dipole term and
the far-field potential can be written as
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Solution 4.6: Electric field of a pure dipole (Griffiths 3rd ed. Prob 3.33)

The electric field of a pure dipole is given by
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Solution 4.7: Field and potential due to a three-charge system (Griffiths 3rd ed. Prob 3.32)



The total charge of the three-charge system is —q. Therefore the monopole contribution is not zero and is given by
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The dipole moment p of the charge system is p = qaz + [—ga — ¢(—a)]§ = gaz. So, the dipole contribution to the
potential is
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Therefore, the potential up to two terms in the multipole expansion is given by
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The electric field E is given by
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