Homework # 2 Due in class on Thursday, August 30th, 2018

Problem 2.1: (2+3=5 marks) Suppose the cross-spectral density function of a field is given by $W(\omega_1, \omega_2) = S(\omega_1)\delta(\omega_1 - \omega_2)$, where $S(\omega) = \frac{1}{\sqrt{2\pi}\Delta\omega} \exp\left[-\frac{(\omega - \omega_0)^2}{2\Delta\omega^2}\right]$ with $\omega_0 \gg \Delta\omega$.

- (a) Evaluate the intensity I(t) of the field.
- (b) Evaluate the coherence time of the field.

Problem 2.2: (4+2+2+2+2=12 marks) Consider a field V(t) given by $V(t) = ae^{-i\omega_a t} + be^{-i\omega_b t}$, where ω_a and ω_b are two frequencies and a and b are two real numbers.

- (a) Find out the cross-spectral density function $W(\omega_1, \omega_2)$ of the field.
- (b) Find out the intensity I(t) of the field.
- (c) Find out the cross-correlation function $\Gamma(t_1, t_2)$ of the field.
- (d) Is this field stationary, at least in the wide sense?
- (e) Find out the degree of coherence function of the field.

Problem 2.3: (2+2+4+4+4+2=18 marks) Suppose the cross-spectral density function of a field is given by $W(\omega_1, \omega_2) = [S_+[\omega_1 - (\omega_0 + \Omega)] + S_-[\omega_1 - (\omega_0 - \Omega)]]\delta(\omega_1 - \omega_2)$, where $S_{\pm}[\omega - (\omega_0 \pm \Omega)] = \frac{1}{\sqrt{2\pi}\Delta\omega} \exp\left[-\frac{[\omega - (\omega_0 \pm \Omega)]^2}{2\Delta\omega^2}\right]$, with $\Delta\omega \ll \Omega \ll \omega_0$.

- (a) Is this field wide-sense stationary in time?
- (b) Plot the spectral density function $S(\omega)$ versus frequency ω . Indicate ω_0 , Ω and $\Delta \omega$ on the plot.
- (c) The above field enters a Mach-Zehnder interferometrie with the time-delays in the two arms being t_1 and t_2 . Calculate the intensity $I_0(\tau)$ at an output port of the interferometer in terms of $\tau = t_2 - t_1$. Assume $k_1 = k_2 = k$.
- (d) Plot the output intensity $I_0(\tau)$ as a function of τ . Indicate ω_0 , Ω and $\Delta \omega$ on the plot.
- (e) Calculate the degree of coherence function and find out a reasonable estimate for the coherence time.
- (f) Plot the degree of coherence as a function of τ and indicate the coherence time on the plot.

Problem 2.4: (10+5+10=25 marks)

For a spatially incoherent source the propagation equation within the far-field approximation takes the following form known as the van Cittert-Zernike theorem:

$$W(\mathbf{r_1}, \mathbf{r_2}, \omega) = -\left(\frac{k}{2\pi}\right)^2 \frac{\exp[ik(r_2 - r_1]]}{r_1 r_2} \int_{\mathcal{A}} S(\mathbf{r}', \omega) e^{-ik(\mathbf{s_2} - \mathbf{s_1}) \cdot \mathbf{r}'} d^2 \mathbf{r}',$$

where \mathbf{r}' is the source co-ordinate, $S(\mathbf{r}', \omega)$ is the spectral density of the source, $\mathbf{r_1} = r_1 \mathbf{s_1}$ and $\mathbf{r_2} = r_2 \mathbf{s_2}$ and where we have substituted $\Lambda_1^*(\bar{k})\Lambda_2(\bar{k}) = (-ik/2\pi)(ik/2\pi)$.

- (a) Find the exact expression for the far-field expression for the cross-spectral density function if the source is spatially incoherent, has constant spectral density $S(\mathbf{r}', \omega) = S_0$ and is in the form of a square aperture of side *a*.
- (b) Since we started with a spatially incoherent source, the coherence area at the source is of course zero. Make a reasonable estimate of the coherence area in the far field at z. Is the area finite? Comment on what caused the field to acquire a finite coherence area upon propagation.

(c) Consider the spatially incoherent source to be in the form as shown in the figure. The source is kept at z = 0. Again, assuming $S(\mathbf{r}', \omega) = S_0$ and $r_1 \approx r_2 \approx z$, derive the expression for the cross-spectral density $W(x_1, y_1, z; x_2, y_2, z; \omega)$ at z = z.

Problem 2.5: (5+5+10+5=25 marks)

- (a) Consider the field U(x, y, 0) of a Gaussian beam $U(x, y, 0) = A \exp \left[-\frac{x^2 + y^2}{w_0^2}\right]$ Where A is a constant. Is this field spatially coherent? What is the coherence area of such a field.
- (b) What is the spectral amplitude $a(q_x, q_y)$ of such a beam. (hint: use the formula derived in the class).
- (c) Next, consider the propagation of the Gaussian beam. First of all, show that the diffraction integral reduces to the following expression within the paraxial approximation: $z >> (x x')^2 + (y y')^2$.

$$U(x,y,z) = -\frac{ik}{2\pi z} e^{ikz} e^{ik(x^2+y^2)/2z} \iint U(x',y',0) e^{ik(x'^2+y'^2)/2z} e^{-ik(xx'+yy')/z} dx' dy'$$

Next, evaluate U(x, y, z) for the Gaussian beam with the amplitude U(x', y', 0) given above, in terms of the following quantities: $z_R = \frac{kw_0^2}{2}$; $w(z) = w_0 \sqrt{1 + \frac{z^2}{z_R^2}}$; $R(z) = z + \frac{z_R^2}{z}$.

(d) Is the beam at z = z spatially coherent. What is the coherence area of the beam.

Problem 2.6: (15 marks) Consider a spatially-completely-coherent, constant-amplitude plane-wave field. The field is temporally stationary with the spectral density given by $S(\omega) = \frac{1}{\sqrt{2\pi}\Delta\omega} \exp\left[-\frac{(\omega-\omega_0)^2}{2\Delta\omega^2}\right]$ with $\omega_0 \gg \Delta\omega$. Suppose you are a given a Young's double slit setup. The separation between the two slits is 2d and the distance to the screen is R, with $R \gg d$, as shown in the figure. The size of the two slits are negligibly small. Describe how one could find the frequency bandwidth $\Delta\omega$ of the field by measuring the intensity I(x) on the screen as a function of x.

