
PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19

Homework # 4
Due in class on Thursday, September 27th, 2018

Problem 4.1: One-Photon Interference (2+2+4+2+2+2+2+2+2=20 marks)
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(a) Consider the one-photon Michelson interferometer as shown above. The state of the photon at the source is
|ψ〉 =

∫∞
0
V (ω)|ω〉dω, where |ω〉 represents one-photon at frequency ω and V (ω) is the field amplitude of a

stationary random field at frequency ω. Show that the probability of detecting a photon at DA is given by

PA = |k1|2〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t1)|ψ〉〉e + |k2|2〈〈ψ|Ê(−)(t− t2)Ê(+)(t− t2)|ψ〉〉e
+ 2Rek∗1k2〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e,

where k1 and k2 are overall constants and t1 and t2 are the travel-times of a photon in the two alternative paths.

(b) Use the representation Ê(+)(t) =
∫∞
0
â(ω)e−iωtdω and show that Ê(−)(t) =

∫∞
0
â†(ω)eiωtdω.

(c) Since the field is stationary we can write 〈V ∗(ω)V (ω′)〉e = S(w)δ(ω − ω′), where S(ω) is the spectral density of
the field. Using the above relation show that

〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e =

∫ ∞
0

S(ω)e−iωτdω

(d) Next, assuming that the field is quasi-monochromatic with mean frequency at ω0, show that

〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e = e−iω0τ

∫ ∞
−∞

S0(ω)e−iωτdω

where S0(ω) = S(ω + ω0).

(e) Finally, derive the one-photon interference law

PA = |k1|2I + |k1|2I + 2|k1||k2|I|γ(τ)| cos(ω0τ + φ)

where I =
∫∞
−∞ S0(ω)dω; γ(τ) =

∫∞
−∞ S0(ω)e−iωτdω/

∫∞
−∞ S0(ω)dω; and φ = arg[k∗1k2] + arg[γ(τ)].

(f) The above expression is the same as that we get in the classical treatment. Discuss what are differences in the
two treatments. Describe the situations in which the classical treatment would be inadequate.

(g) Take S(ω) = 1/(
√

2π∆ω) exp[−(ω − ω0)2/(2∆ω2)]. Here ∆ω is the standard deviation of S(ω), that is, the
frequency-width of the field. Calculate γ(τ) and show that the coherence time, i.e., the standard deviation of
γ(τ) is 1/∆ω.

(h) Describe, both classically and quantum mechanically, what happens to the interference when τ � τc.

(i) Assume that the central wavelength of the source is λ and it has a wavelength-bandwidth ∆λ =. Calculate the
frequency bandwidth ∆ω in terms of λ and ∆λ. Calculate τc and plot |γ(τ)| for λ = 700nm and ∆λ = (i) 1nm ,
(ii) 10 nm and (iii) 100 nm.
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(j) Explain why the coherence time depends on frequency-bandwidth? Also, can there be a situation in which the
frequency-bandwidth has no affect on the coherence time of the field?

Problem 4.2: Hong-Ou-Mandel Effect (5+5+10=20 marks)
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(a) Consider the Hong-Ou-Mandel experiment. Assuming θ ≈ 0 and kd = 0, find the coincidence count rate of the
two detectors.

(b) Find the one-photon count rate at detectors Ds and Di.

(c) Refer to the figure below. Assuming x = 0, calculate the coincidence count rate Rsi as a function of the
displacement y. If the central wavelength of each of the signal and idler field is λs0, find the fringe period of the
coincidence interference pattern. (The above setup is the idea of quantum lithography. For more details refer to
“A.N.Boto, et al. Phys. Rev. Lett. 85, 2733 (2000).”
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Problem 4.3: Double-pass experiment (10+5+5+10+5=35 marks)

(a) Consider the situation shown in the figure. This is the double-pass setup that we discussed in the class. Here xs,
xi and xp are the displacements of the signal (Ms), idler (Mi) and the pump (Mp) mirrors, respectively, from the
balanced position at which all the mirrors are equidistant from the PDC crystal. Calculate the coincidence count
rate Rsi and the one-photon count rates Rs and Ri as a function of the displacement of the three mirrors.
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(b) Take xp = 0. Now, find a way of moving the remaining two mirrors so that we only see the effect of the pump
coherence function γ(∆L).

(c) Take xp = 0. And find a way of moving the remaining two mirrors so that we only see the effect of the signal-idler
coherence function γ′(∆L′).
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(d) What should be the condition for seeing a Hong-Ou-Mandel type profile, that is, a dip in the coincidence count
rate Rsi. What should be the condition for observing a hump in the coincidence count rate. Can this dip/hump
be explained in terms of photon-bunching effect? Plot Rsi as a function of the mirror displacements to show the
dip/hump profile; plot both the curves on the same plot.

(e) Usually in a one-photon interference experiment, there are more than one ports for the photons to go out. This
means that whenever we are observing a minimum in the intensity at one port, the intensity at the other port
is at its maximum such that the total intensity is conserved. However, in the above experiment the two photons
don’t have any ports other than Ds and Di. So, how do you explain the photon-number conservation when we
are at a minimum. Where do the photons go? For more details and explanations, you could refer to “Phys. Rev.
Lett. 72, 629632 (1994).”

Problem 4.4: Two-photon Coherence function (10+5+10=25 marks)
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(a) Assuming that the coincidence detection system is much faster that the delay time x/c, calculate the coincidence
count rate Rsi and the one-photon count rate Rs and Ri in terms of x.

(b) Describe where do the entangled photons go when minima are observed in the coincidence count rate. Note that
this setup is an alternative way of doing quantum lithography as described in problem 4.2?

(c) Design another experimental setup that would keep γ′(∆L′) = 1 and that could be used for quantum lithography.
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