Homework \# 5

(Due in class on Monday, Nov 5th, 2018)

Problem 5.1: Misc Questions ($5+5=10$ marks)

(a) What interferes in a two-photon interference?
(b) What is orbital angular momentum of a photon described by the state $|\psi\rangle=\sum_{l=1}^{N} c_{l}|l\rangle$?

Problem 5.2: Spatial two-photon wave-function ($5+20+5+10=40$ marks)

Let us consider the production of entangled photons using parametric down-conversion as described in the figure. In class, we derived the expression for the two-photon state to be $\left|\psi_{\text {tp }}\right\rangle=A \iint_{\infty}^{\infty} d^{2} \boldsymbol{q}_{s} d^{2} \boldsymbol{q}_{i} V\left(\boldsymbol{q}_{s}+\boldsymbol{q}_{i}\right)\left|\boldsymbol{q}_{s}\right\rangle\left|\boldsymbol{q}_{i}\right\rangle$.
(a) Within the assumptions of collinear down-conversion and paraxial approximation, show that the electric field operators at the two detectors are given by

$$
\hat{E}_{s}^{(+)}\left(\boldsymbol{r}_{s}\right)=e^{i k_{s} z} \int d \boldsymbol{q} \hat{a}_{s}(\boldsymbol{q}) e^{i\left(\boldsymbol{q} \cdot \boldsymbol{\rho}_{s}-q^{2} z / 2 k_{s}\right)}, \quad \text { and } \quad \hat{E}_{i}^{(+)}\left(\boldsymbol{r}_{i}\right)=e^{i k_{i} z} \int d \boldsymbol{q}^{\prime} \hat{a}_{i}\left(\boldsymbol{q}^{\prime}\right) e^{i\left(\boldsymbol{q}^{\prime} \cdot \boldsymbol{\rho}_{i}-q^{\prime 2} z / 2 k_{i}\right)},
$$

where $q^{2}=|\boldsymbol{q}|^{2}, q^{\prime 2}=\left|\boldsymbol{q}^{\prime}\right|^{2}, k_{s}=\left|\boldsymbol{k}_{s}\left(\omega_{s}\right)\right|$, and $k_{i}=\left|\boldsymbol{k}_{i}\left(\omega_{i}\right)\right|$.
(b) Next, take $k_{s} \approx k_{i} \approx k_{0} / 2$, where k_{0} is the cental wave-vector magnitude of the pump field, and consider the onedimensional version of this problem so that $\rho \rightarrow x$. Also, take the pump to be a completely spatially-coherent Gaussian beam: $V\left(k_{s x}+k_{i x}\right)=\exp \left[-w_{0}^{2}\left(k_{s x}+k_{i x}\right)^{2} / 4\right]$, where w_{0} is the pump beam-waist. Show that the two-photon probability amplitude $\psi_{\mathrm{tp}}\left(x_{s}, x_{i}\right)=\langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle$ is given by

$$
\psi_{\mathrm{tp}}\left(x_{s}, x_{i}\right)=A e^{i k_{0} z} \exp \left[-\frac{\left(x_{s}+x_{i}\right)^{2}}{4 w^{2}(z)}\right] \exp \left[\frac{i\left(x_{s}+x_{i}\right)^{2} z}{2 k_{0} w_{0}^{2} w^{2}(z)}\right] \exp \left[\frac{i k_{0}\left(x_{s}-x_{i}\right)^{2}}{8 z}\right]
$$

where $w(z)=\left[w_{0}^{2}+\left(4 z^{2}\right) /\left(k_{0}^{2} w_{0}^{2}\right)\right]^{1 / 2}$ is the beam-waist of the pump at $z=z$, and A is a z-dependent constant.
(c) Finally, show that the two-photon coincidence probability, to within an overall z-dependent constant, is

$$
R\left(x_{s}, x_{i}\right)=\left|\psi_{\mathrm{tp}}\left(x_{s}, x_{i}\right)\right|^{2}=\left\langle\psi_{\mathrm{tp}}\right| \hat{E}_{s}^{(-)}\left(x_{s}\right) \hat{E}_{i}^{(-)}\left(x_{i}\right) \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \rightarrow A \exp \left[-\frac{\left(x_{s}+x_{i}\right)^{2}}{2 w^{2}(z)}\right]
$$

(d) Plot the above two-photon coincidence probability $R\left(x_{s}, x_{i}\right)$ and describe it.

Problem 5.3: Spatial Coherence and Entanglement ($5+5+5+5+5+5=30$ marks $)$

The scheme below represents a spatial two-qubit state, with $\{|s 1\rangle,|s 2\rangle\}$ and $\{|i 1\rangle,|i 2\rangle\}$ forming the two-dimensional orthonormal bases for the signal and idler photons, respectively, where $|s 1\rangle$ represents the state of the signal photon passing through the hole located at transverse position $\boldsymbol{\rho}_{s 1}$, etc. The four-dimensional basis-set for the two-qubit state can then be represented by $\{|s 1\rangle|i 1\rangle,|s 1\rangle|i 2\rangle,|s 2\rangle|i 1\rangle,|s 2\rangle|i 2\rangle\}$, where $|s 1\rangle|i 1\rangle$ represents the joint state of the signal and idler photons when the signal photon passes through the hole located at $\rho_{s 1}$ and the idler photon passes through the hole located at $\boldsymbol{\rho}_{i 1}$, etc. Assuming that the probabilities of states $|s 1\rangle|i 2\rangle$ and $|s 2\rangle|i 1\rangle$ are negligibly small, we write the density matrix $\rho_{\text {qubit }}$ of the two-qubit state thus prepared as:

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
a & 0 & 0 & c \tag{1}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
d & 0 & 0 & b
\end{array}\right) .
$$

The coincidence count rate at the detector, as derived in the class is

$$
R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)=k_{1}^{2} S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+k_{2}^{2} S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)+2 k_{1} k_{2} \sqrt{S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)}\left|\mu^{(2)}(\Delta \boldsymbol{\rho}, z)\right| \cos \left(k_{0} \Delta L+\Delta \phi\right) .
$$

(a) What is the meaning of the diagonal terms of the density matrix $\rho_{\text {qubit }}$? Explain why a and b should be proportional to the two-photon spectral densities, that is, $a=k_{1}^{2} S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)$ and $b=k_{2}^{2} S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)$?
(b) What is the meaning of the off-diagonal terms of the density matrix $\rho_{\text {qubit }}$? Explain why $c=d^{*}$ should be proportional to the two-photon cross-spectral density, that is, $c=d^{*}=k_{1} k_{2} W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)$?
(c) Calculate the concurrence $C\left(\rho_{\text {qubit }}\right)$ of the above two-qubit state.
(d) Find the visibility V of two-photon fringes and show that $V=C\left(\rho_{\text {qubit }}\right)$.
(e) What is $C\left(\rho_{\text {qubit }}\right)$ when $a=b$ and $|c|=|d|=1 / 2$? What is the necessary physical condition for ensuring this?
(f) What is $C\left(\rho_{\text {qubit }}\right)$ when $a=b$ and $|c|=|d|=0$? What is the necessary physical condition for ensuring this?

Problem 5.4: Concurrence of an X-matrix $(2+6+2+10=20$ marks $)$
Consider a two-particle state $\left|\psi_{1}\right\rangle=a|H H\rangle+b|V V\rangle$, where a and b are real numbers and where $a^{2}+b^{2}=1$. Consider another two-particle state $\left|\psi_{2}\right\rangle=p|H V\rangle+q|V H\rangle$, where p and q are real numbers and where $p^{2}+q^{2}=1$.
(a) Write down the density matrix ρ_{1} corresponding to state $\left|\psi_{1}\right\rangle$.
(b) Calculate the concurrence of ρ_{1}.
(c) Now, consider a two-particle state that is an incoherent mixture of staes $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ with equal proportion. Write down the density matrix ρ corresponding to this state.
(d) Calculate the concurrence of ρ.

