
PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19

Solutions: Homework # 2

Solution 2.1

We have

Γ(t1, t2) =

∫∫
W (ω1, ω2)eiω1t1e−iω2t2dω1dω2

(a) For W (ω1, ω2) = S(ω1)δ(ω1 − ω2), the cross-correlation function becomes

Γ(t1, t2) =

∫
S(ω)e−iω(t2−t1)dω =

∫
S(ω)e−iωτdω =

∫
1√

2π∆ω
exp

[
− (ω − ω0)2

2∆ω2

]
e−iωτdω = e−iω0τ exp

[
−∆ω2τ2

2

]
Therefore the intensity is

I(t) = Γ(t, t) =

∫
S(ω)dω =

∫
1√

2π∆ω
exp

[
− (ω − ω0)2

2∆ω2

]
dω = 1,

which is a constant as a function of time.

(b) We see that the cross-correlation function depends only on the time-difference τ = t2 − t1 and is the Fourier
transform of the spectral density S(ω). From the expression of the cross-correlation function derived above we

find that the degree of coherence function is γ(τ) = exp

[
−∆ω2τ2

2

]
. Thus 1/∆ω, which is the standard deviation

of γ(τ), can be taken as the coherence time of the field.

Solution 2.2

(a) We have

ṽ(ω) =
1

2π

∫ ∞
−∞

V (t)eiωtdω =
1

2π

∫ ∞
−∞

[
aei(ω−ωa)t + bei(ω−ωb)t

]
dω =

1

2π
[aδ(ω − ωa) + bδ(ω − ωb)]

Therefore, the cross-spectral density function is given by

W (ω1, ω2) = 〈ṽ∗(ω1)ṽ(ω2)〉 = ṽ∗(ω1)ṽ(ω2)

=
1

(2π)2

[
a2δ(ω1 − ωa)δ(ω2 − ωa) + b2δ(ω1 − ωb)δ(ω2 − ωb)

+ abδ(ω1 − ωa)δ(ω2 − ωb) + abδ(ω1 − ωb)δ(ω2 − ωa)
]

(b) The intensity is given by

I(t) = 〈V ∗(t)V (t)〉 = V ∗(t)V (t) = a2 + b2 + 2ab cos(ωa − ωb)t

(c) the temporal correlation function is given by

Γ(t1, t2) = 〈V ∗(t1)V (t2)〉 = V ∗(t1)V (t2)

= (aeiωat1 + beiωbt1)(ae−iωat2 + be−iωbt2)

= a2eiωa(t1−t2) + b2eiωb(t1−t2) + abei(ωat1−ωbt2) + abei(ωbt1−ωat2)
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(d) Since the intensity and the temporal correlation function depend on the time origin, it is clear that the field is
not stationary.

(e) The degree of temporal coherence is given by

γ(t1, t2) =
|Γ(t1, t2)|√

Γ(t1, t1)Γ(t2, t2)
=

|V ∗(t1)V (t2)|√
V ∗(t1)V (t1)V ∗(t2)V (t2)

= 1

Solution 2.3

(a) We have

Γ(t1, t2) =

∫∫
W (ω1, ω2)eiω1t1e−iω2t2dω1dω2

For W (ω1, ω2) = [S+[ω1 − (ω0 + Ω)] + S−[ω1 − (ω0 − Ω)]]δ(ω1 − ω2), the cross-correlation function becomes

Γ(t1, t2) =

∫∫
[S+[ω1 − (ω0 + Ω)] + S−[ω1 − (ω0 − Ω)]]δ(ω1 − ω2)eiω1t1e−iω2t2dω1dω2

or,

Γ(τ) =

∫
S+[ω1 − (ω0 + Ω)]e−iωτdω +

∫
S−[ω1 − (ω0 − Ω)]e−iωτdω

Therefore the intensity is

I(t) = Γ(t, t) = const

We find that the cross-correlation function depends only on the time difference and the intensity is independent
of time. Therefore, the field is wide sense stationary.

(b) See the plot below
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(c) Suppose that the input field is V (t). Therefore, the field at an output port of the Mach-Zehnder interferometer
is given by V (t) = kV (t− t1) + kV (t− t2). The intensity at the output is therefore given by

I0 = 〈V ∗(t)V (t)〉 = |k2|
[
〈V (t− t1)|2 + |V (t− t2)|2 + 〈V ∗(t− t1)V (t− t2)〉+ c.c.

]
= |k2| [Γ(0) + Γ(0) + Γ(τ) + Γ∗(τ)]
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We have

Γ(τ) =

∫
S+[ω1 − (ω0 + Ω)]e−iωτdω +

∫
S−[ω1 − (ω0 − Ω)]e−iωτdω

= e−i(ω0+Ω)τ exp

[
−∆ω2τ2

2

]
+ e−i(ω0−Ω)τ exp

[
−∆ω2τ2

2

]
= 2e−iω0τ cos(Ωτ) exp

[
−∆ω2τ2

2

]
From the above expression, we get that Γ(0) = 2. Therefore, the intensity I0 can be written as

I0 = |k2|
[
2 + 2 + 2 exp

[
−∆ω2τ2

2

]
cos(Ωτ) cos(ωoτ)

]
= 4|k2|

[
1 + exp

[
−∆ω2τ2

2

]
cos(Ωτ) cos(ωoτ)

]
(d) See the plot below
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(e) The degree of coherence function can be calculated as

γ(τ) =
|Γ(τ)|√
Γ(0)Γ(0)

= exp

[
−∆ω2τ2

2

]
cos(Ωτ)

We find that the degree of coherence function is a product of two functions, one is decaying exponential and the
other one is an oscillating function. As a result the degree of coherence goes down to zero for some τ and then
starts increasing again. So, one cannot take the standard deviation of the degree of coherence function as the
coherence time in this case. However, the standard deviation of the exponential function can still be taken as
the coherence time since that overall decides the time scale after which the coherence function does not increase
up to a very large value. So, 1/∆ω can be taken as the coherence time. Please note that ∆ω is the frequency
bandwidth of the individual peaks in the spectral density and is not the frequency bandwidth of the total spectral
density.

(f) See the plot below
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Solution 2.4

(a)

W (r1, r2, ω) = −
(
k

2π

)2
exp[ik(r2 − r1]

r1r2

∫
A
S(r′, ω)e−ik(s2−s1)·r′d2r′, (1)

Since the source is a square aperture, we’ll work in the cartesian coordinate system. Also, since the source is
spatially incoherent, we have over the area of interest, S(r′, ω) → S(x′, y′, 0;ω) = S0, where K is a constat.
Therefore, we can write the above equation as

W (x1, y1, z;x2, y2, z;ω) = −S0

(
k

2π

)2
exp[ik(r2 − r1]

r1r2

∫
A
e−ik(s2−s1)·r′dx′dy′, (2)

Since we are are working within the far-field approximation we have

s1 =

(
x1

r1
,
y1

r1
,
z

r1

)
≈
(x1

z
,
y1

z
, 1
)

s2 =

(
x2

r2
,
y2

r2
,
z

r2

)
≈
(x2

z
,
y2

z
, 1
)

(s2 − s1) · r′ =

[
(x2 − x1)x′

z
+

(y2 − y1)y′

z

]
The expression for the cross-spectral density now becomes

W (x1, y1, z;x2, y2, z;ω) =

(
k

2π

)2
exp[ik(r2 − r1]

r1r2
K

∫ a/2

−a/2

∫ a/2

−a/2
e−i

k
z [(x2−x1)x′+(y2−y1)y′]dx′dy′

W (x1, y1, z;x2, y2, z;ω) =

(
k

2π

)2
exp[ik(r2 − r1]

r1r2
K

∫ a/2

−a/2
e−i

k(x2−x1)x′
z dx′

∫ a/2

−a/2
e−i

k(y2−y1)
z y′dy′

W (x1, y1, z;x2, y2, z;ω) =

(
k

2π

)2
exp[ik(r2 − r1]

r1r2
Ka2Sinc

(
k(x2 − x1)a

2z

)
Sinc

(
k(y2 − y1)a

2z

)
So, we got the two Sinc functions as expected.

(b) The first zero of the Sinc function occurs at x2−x1 = 2πz/(ka) and therefore [4πz/(ka)]2 can be taken to be the
coherence area of the source. As we can see, the coherence area increases as a function of z. This is because as
z increases the sum total of the fields coming from the source to any two arbitrary points in the far-field become
more and more indistinguishable.
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(c)

W (r1, r2, ω) = −
(
k

2π

)2
exp[ik(r2 − r1]

r1r2

∫
A
S(r′, ω)e−ik(s2−s1)·r′d2r′, (3)

We’ll work in the cartesian coordinate system. Since the source is spatially incoherent, we have over the area of
interest, S(r′, ω)→ S(x′, y′, 0;ω) = S0. Therefore, we can write the above equation as

W (x1, y1, z;x2, y2, z;ω) = −S0

(
k

2π

)2
exp[ik(r2 − r1]

r1r2

∫
A
e−ik(s2−s1)·r′dx′dy′, (4)

Since we are are working within the far-field approximation we have

s1 =

(
x1

r1
,
y1

r1
,
z

r1

)
≈
(x1

z
,
y1

z
, 1
)

s2 =

(
x2

r2
,
y2

r2
,
z

r2

)
≈
(x2

z
,
y2

z
, 1
)

(s2 − s1) · r′ =

[
(x2 − x1)x′

z
+

(y2 − y1)y′

z

]
The expression for the cross-spectral density now becomes

W (x1, y1, z;x2, y2, z;ω) =

(
k

2π

)2
exp[ik(r2 − r1]

r1r2
S0

∫ b/2

−b/2
e−i

k(x2−x1)x′
z dx′

×

[∫ −d+a/2

−d−a/2
e−i

k(y2−y1)
z y′dy′ +

∫ d+a/2

d−a/2
e−i

k(y2−y1)
z y′dy′

]

W (x1, y1, z;x2, y2, z;ω) =

(
k

2π

)2
exp[ik(r2 − r1]

r1r2
S0a

2Sinc

(
k(x2 − x1)b

2z

)
Sinc

(
k(y2 − y1)a

2z

)
2a cos

(
k(y2 − y1)d

z

)
.

Solution 2.5

(a) The cross-spectral density function for this beam is given by:

W (x1, y1, z;x2, y2, z) = U∗(x1, y1, 0)U(x2, y2, 0)

The degree of coherence of such a beam can now be written as

µ(x1, y1, z;x2, y2, z) =
W (x1, y1, z;x2, y2, z)√

U∗(x1, y1, 0)U(x1, y1, 0)
√
U∗(x2, y2, 0)U(x2, y2, 0)

= 1

Therefore this beam is fully coherent and the coherence area of this beam is infinite.

(b) The spectral amplitude a(qx, qy) is the amplitude of the plane-wave components of the field. The spectral
amplitude is related with the transverse field amplitude through the following formula:

a(qx, qy) =

(
1

2π

)2 ∫∫ ∞
∞

U(x, y, 0)e−i(qxx+qyy)dxdy

For the Gaussian field amplitude of this problem, the spectral amplitude is given by

a(qx, qy) = A

(
1

2π

)2 ∫∫ ∞
∞

exp

(
−x

2 + y2

w2
0

)
e−i(qxx+qyy)dxdy

We already derived Gaussian integrals in Homework 1. Here we would simple apply them. Making use of the
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Gaussian integral ∫ ∞
∞

e−αx
2+βxdx = eβ

2/4α
(π
α

)1/2

,

we get

a(qx, qy) = A

(
1

2π

)2 ∫ ∞
∞

exp

(
− x

2

w2
0

)
e−iqxxdx

∫ ∞
∞

exp

(
− y

2

w2
0

)
e−iqyydy

= A

(
1

2π

)2(
π

1/w2
0

)1/2

e−w
2
0q

2
x/4

(
π

1/w2
0

)1/2

e−w
2
0q

2
y/4

= A
w2

0

4π
e−w

2
0(q2x+q2y)/4

We see that the width of the spectral amplitude is inversely proportional to the width of the filed amplitude, i.e.,
the width of the beam. This means that a narrower beam has much broader spectral content.

(c) Using the diffraction integral and the field amplitude for the Gaussian beam, we can write the field amplitude at
z = z as

U(x, y, z) = − ik
2π

∫∫
A exp

[
−x
′2 + y′2

w2
0

]
eikr

r
dx′dy′

Within the approximation, z >> (x− x′)2 + (y − y′)2, we have

r = [(x− x′)2 + (y − y′)2 + z2]1/2 = z

[
z +

(x− x′)2 + (y − y′)2

z2

]1/2

≈ z
[
z +

(x− x′)2 + (y − y′)2

2z2

]
= z +

(x− x′)2 + (y − y′)2

2z

Substituting the above approximation for r in the diffraction integral we get,

U(x, y, z) = − iAk
2πz

eikzeik(x2+y2)/2z

∫∫
exp

[
−x
′2 + y′2

w2
0

]
e−ik(xx′+yy′)/zeik0(x′2+y′2)/2zdx′dy′

The above equation can be written as a product of two separate integrals

U(x, y, z) = − iAk
2πz

eikzeik(x2+y2)/2z

∫ ∞
∞

exp

[
−x
′2

w2
0

]
e−ikxx

′/zeikx
′2/2zdx′

×
∫ ∞
∞

exp

[
−y
′2

w2
0

]
e−ikyy

′/zeiky
′2/2zdy′

Rearranging, we get

U(x, y, z) = − iAk0

2πz
eikzeik(x2+y2)/2z

∫ ∞
∞

exp

[
−x′2

(
1

w2
0

− ik

2z

)]
e−ikxx

′/zdx′∫ ∞
∞

exp

[
−y′2

(
1

w2
0

− ik

2z

)]
e−ikyy

′/zdy′

Using the Gaussian integral ∫ ∞
∞

e−αx
2+βxdx = eβ

2/4α
(π
α

)1/2

,
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we evaluate the above integrals to get

U(x, y, z) = − iAk
2πz

eikzeik(x2+y2)/2z exp

 (−ikx/z)2

4
(

1
w2

0
− ik0

2z

)
 π(

1
w2

0
− ik0

2z

)
1/2

× exp

 (−iky/z)2

4
(

1
w2

0
− ik

2z

)
 π(

1
w2

0
− ik

2z

)
1/2

Rearranging we get,

U(x, y, z) = −Aw0

w(z)
eikzei[kz−tan−1(z/zR)]eik(x2+y2)/2R(z)e−(x2+y2)/w2(z),

where

zR =
kw2

0

2
; w(z) = w0

√
1 +

z2

z2
R

; R(z) = z +
z2
R

z

w0(z) is the size of the beam after it has propagated a distance z. We see that the size of the beam increases as
it propagates. zR is called the Rayleigh range. It is the z-distance over which the beam size increases by a factor
of
√

2. More intuitively, it is the z-range over which the beam size can be said to have not changed too much.
R(z) is the radius of curvature of the beam at z. We see that at z = 0, the radius of curvature is ∞. This is due
to the fact that the phase-front of a Gaussian beam is completely flat at z = 0

(d) Yes, the beam is still spatially fully coherent. This means that a spatially completely coherent beam remains
completely coherent upon propagation.

Solution 2.6
The field V (x, t) at location x on the screen at time t can be written in terms of the fields at the two slits as

V (x, t) = k1V1(d, t− t1) + k2V2(−d, t− t2),

where V1(d, t − t1) and V2(−d, t − t2) are the field amplitudes at the z = 0 plane at (d, t − t1) and (−d, t − t2),
respectively, and where k1 and k2 are the attenuation constants. Now, the intensity I(x) at the screen is then given
by

I(x) = 〈V (x, t)∗V (x, t)〉 = |k1|2〈V1(d, t− t1)∗V1(d, t− t1)〉+ |k2|2〈V2(−d, t− t2)∗V2(−d, t− t2)〉
+ k∗1k2〈V1(d, t− t1)∗V2(−d, t− t2)〉+ k∗2k1〈V2(−d, t− t2)∗V1(d, t− t1)〉
= |k1|2I(d, t− t1) + |k2|2I(−d, t− t2) + k∗1k2Γ(d, t1;−d, t2) + c.c.,

where I(d, t− t1) is the intensity at (d, t− t1), and Γ(d, t1;−d, t2) is the cross-correlation function, etc. Now, since it
is a constant-amplitude plane wave field, the field amplitude of the incoming field z = 0 is independent of the spatial
location. So, we can write the above intensity as

I(x) = |k1|2I0(t− t1) + |k2|2I0(t− t2) + k∗1k2Γ(t1, t2) + c.c.,

We know that the field is stationary in time. Therefore, we have

Γ(t1, t2) = Γ(τ) =

∫
S(ω)e−iωτdω =

∫
1√

2π∆ω
exp

[
− (ω − ω0)2

2∆ω2

]
e−iωτdω = e−iω0τ exp

[
−∆ω2τ2

2

]
,
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where τ = t2 − t1 and it can be shown to be

τ = t2 − t1 ≈
1

c

[
R+

(x+ d)2

2R

]
− 1

c

[
R+

(x− d)2

2R

]
=

2xd

cR
.

Also, we have I0(t− t1) = I0(t− t2) = Γ(0) = 1. Therefore, the intensity can now be written as

I(x) = |k1|2 + |k2|2 + 2|k1k2| exp

[
−∆ω2τ2

2

]
cos(ω0τ + φk)

= |k1|2 + |k2|2 + 2|k1k2| exp

[
−2x2d2∆ω2

c2R2

]
cos

(
ω02xd

cR
+ φk

)
,

where k∗1k2 = |k1||k2|e−iφk . We find that the intensity I(x) as a function of x varies in a sinusoidal manner. The
visibility of these interference fringes decreases as a functions x. This visibility function is essentially the degree of

coherence function γ(τ) = exp

[
−∆ω2τ2

2

]
= exp

[
−2x2d2∆ω2

c2R2

]
. The standard deviation of this envelope function is

cR

2d∆ω
. So by measuring the width of this envelope one can measure ∆ω.
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