
PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19

Solutions: Homework # 3

Solution 3.1

(a) We start with the Wolf equation for the cross-correlation function:

∇2
1Γ(r1, r2, τ) =

1

c2
∂2

∂τ2
Γ(r1, r2, τ)

Writing the cross-correlation function as the Fourier transform of the cross-spectral density function and simpli-
fying, we get

∇2
1

∫ ∞
0

W (r1, r2, ω)e−iωτdω =
1

c2
∂2

∂τ2

∫ ∞
0

W (r1, r2, ω)e−iωτdω

or, ∇2
1

∫ ∞
0

W (r1, r2, ω)e−iωτdω =
1

c2

∫ ∞
0

W (r1, r2, ω)
∂2

∂τ2
e−iωτdω

or, ∇2
1

∫ ∞
0

W (r1, r2, ω)e−iωτdω =
−ω2

c2

∫ ∞
0

W (r1, r2, ω)e−iωτdω

or,

∫ ∞
0

(
∇2

1W (r1, r2, ω) +
ω2

c2
W (r1, r2, ω)

)
e−iωτdω = 0

⇒ ∇2
1W (r1, r2, ω) + |k|2W (r1, r2, ω) = 0

In a similar manner, one could derive the Wolf’s equation for the other space derivative.

(b) The propagation equation for the cross-spectral density function is:

W (r1, r2, ω) =

∫
A

∫
A
W (r′1, r

′
2, ω)Λ∗1(k)Λ2(k)

exp[ik(R2 −R1)]

R1R2
d2r′1d

2r′2 (1)

Taking the Fourier transform of this equation on both sides we get,∫ ∞
0

W (r1, r2, ω)e−iωτdω

=

∫ ∞
0

(∫
A

∫
A
W (r′1, r

′
2, ω)

exp[ik(R2 −R1)]

R1R2
Λ∗1(k)Λ2(k)d2r′1d

2r′2

)
e−iωτdω

Writing, k = ω/c, we write the above equation as∫ ∞
0

W (r1, r2, ω)e−iωτdω

=

∫ ∞
0

(∫
A

∫
A
W (r′1, r

′
2, ω)

exp[iω(R2 −R1)/c]

R1R2
Λ∗1(ω/c)Λ2(ω/c)d2r′1d

2r′2

)
e−iωτdω

We work in the quasi-monochromatic limit, we assume that the inclination factors Λ∗1(ω/c) and Λ∗2(ω/c) do not
change appreciably over the frequency range of interest, so they can be pulled out of the ω-integral after replacing
them with their values at mean frequencies Λ∗1(ω̄/c) and Λ∗2(ω̄/c), respectively. After rearranging, we can now
write∫ ∞

0

W (r1, r2, ω)e−iωτdω

=

∫
A

∫
A

∫ ∞
0

(
W (r′1, r

′
2, ω)

exp[iω(R2 −R1)/c]

R1R2
e−iωτdω

)
Λ∗1(ω̄/c)Λ2(ω̄/c)d2r′1d

2r′2
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Now let’s consider the exponential:

exp

[
iω

(R2 −R1)

c

]
= exp

[
iω̄

(R2 −R1)

c

]
exp

[
i(ω − ω̄)

(R2 −R1)

c

]
We have that |R2−R1|/c is much smaller than the coherence time of the source, that is, that |R2−R1|/c� 1/∆ω,
where ∆ω is the frequency range of interest. Also, for the frequency range of interest ω − ω̄ ≤ ∆ω. Therefore,

within the frequency range of interest (ω − ω̄) (R2−R1)
c � 1. With this approximation, we have

exp

[
iω̄

(R2 −R1)

c

]
exp

[
i(ω − ω̄)

(R2 −R1)

c

]
≈ exp

[
iω̄

(R2 −R1)

c

]
Substituting in the above equation we get∫ ∞

0

W (r1, r2, ω)e−iωτdτ

=

∫
A

∫
A

(∫ ∞
0

W (r′1, r
′
2, ω)e−iωτdτ

)
exp[iω̄(R2 −R1)/c]

R1R2
Λ∗1(ω̄/c)Λ2(ω̄/c)d2r′1d

2r′2

Now, using the definition of the cross-correlation function, and replacing ω̄ = ck̄, we get

Γ(r1, r2, τ) =

∫
A

∫
A

Γ(r′1, r
′
2, τ)

exp[ik̄(R2 −R1)]

R1R2
Λ∗1(k̄)Λ2(k̄)d2r′1d

2r′2, (2)

which is the propagation equation of the cross-correlation function.

Solution 3.2:

(a) See Mandel and Wolf, Section 5.6.4 for the detailed derivation. The cross-spectral density at z = 0 is given by

W (ρ1,ρ2) =
1

k4

∫∫ ∞
−∞
A(q1, q2)e−i(q1·ρ1−q2·ρ2)d2q1d

2q2.

Substituting the expression for the angular coherence functionA(q1, q2), and making use of the standard Gaussian
integral, we can obtain the desired result:

W (ρ1,ρ2, z = 0) = A′
√
S(ρ1)S(ρ2)µ(∆ρ) = A′

√
exp

[
− (ρ1)2

2σ2
s

]
exp

[
− (ρ2)2

2σ2
s

]
exp

[
− (∆ρ)2

2σ2
µ

]
(3)

with α = σ2
s

(
σ2
µ + 2σ2

s

)
/(σ2

µ + 4σ2
s) and β = 2σ4

s/(σ
2
µ + 4σ2

s), ∆ρ = ρ2 − ρ1.

(b) The cross-spectral density function at any z is given by

W (ρ1,ρ2, z) =
1

k4

∫∫ ∞
−∞
A(q1, q2)e−iq1.ρ1+iq2.ρ2e−i

q21−q
2
2

2k zd2q1d
2q2.

Substituting the expression for the angular coherence function A(q1, q2), and again making use of the standard
Gaussian integral, we can evaluate the integral to yield

W (ρ1,ρ2, z) = A′′
√
S(ρ1)S(ρ2)µ(∆ρ) = A′′

√
exp

[
− (ρ1)2

2σs(z)2

]
exp

[
− (ρ2)2

2σs(z)2

]
exp

[
− (∆ρ)2

2σµ(z)2

]
(4)

where ∆ρp = ρp1 − ρp2, and where

σs(z) =
z
√
σ2
µ + 4σ2

s

2k0σsσµ
(5)
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is the rms beam radius of the field at z in the far field; and

σµ(z) =
z
√
σ2
µ + 4σ2

s

2k0σ2
s

(6)

is the rms spatial coherence width of the field at z in the far field.

Solution 3.3

(a) The cross-spectral density function at any z is given by

W (ρ1,ρ2, z) =
1

k4

∫∫ ∞
−∞
A(q1, q2)e−iq1.ρ1+iq2.ρ2e−i

q21−q
2
2

2k zd2q1d
2q2.

Let us take the angular correlation function to be A(q1, q2) = S(q1)δ(q1 − q2). Substituting it in the above
integral we get

W (ρ1,ρ2, z) =
1

k4

∫ ∞
−∞
S(q1)eiq1.(ρ2−ρ1)d2q1 =

1

k4

∫ ∞
−∞
S(q1)eiq1.∆ρd2q1.

We find that the cross-spectral density does not depend on z. Therefore, we conclude that the transverse coherence
width also does not depend on z.

Solution 3.4

(a) The amplitude of the field after the slits in a given mode index l is given by

αl = =
1

2π

∫ π

−π
Φ(φ)V (φ)e−ilφdφ

=
1

2π

∫ π

−π
δ(φ− φ1)V (φ)e−ilφdφ+

1

2π

∫ π

−π
δ(φ− φ2)V (φ)e−ilφdφ

=
1

2π
V (φ1)e−ilφ1 +

1

2π
V (φ2)e−ilφ2

=
1

2π

∑
l′

αl′e
il′φ1e−ilφ1 +

1

2π

∑
l′

αl′e
il′φ2e−ilφ2

=
1

2π

∑
l′

αl′e
i(l′−l)φ1 +

1

2π

∑
l′

αl′e
i(l′−l)φ2

Now, using, 〈α∗l αl′〉 = Clδll′ , we get

|αl|2 = 〈α∗l αl〉 =
1

(2π)2

∑
l′

Cl′ +
1

(2π)2

∑
l′

Cl′ +
1

(2π)2

∑
l′

Cl′e
−i(l′−l)(∆φ) + c.c.

=
2

(2π)2

∑
l′

Cl′ [1 + cos[(l′ − l)∆φ]]

(b) Now, when Cl = 1, for l = l0, and Cl = 0, otherwise, we get

|αl|2 =
1

2π2
[1 + cos[(l0 − l)∆φ]
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Solution 3.5

(a) The concept of pure and mixed states is very frequently encountered in Quantum Mechanics. The classical analog
of the pure states in optics is a fully coherent state. The classical analog of the mixed state in optics is a partially
coherent field, such as the field of a continuous-wave laser. A system is said to be in the pure state if it can be
described by a single wave-function. This single wave-function can be in any arbitrary linear superposition of the
eigenfunctions of the system. However, in the linear superposition, all the eigenfunctions have to have a definite
phase relationship between them. On the other hand, a mixed state is a statistical mixture of several pure states.
Since it is a statistical mixture it cannot have a wave-function representation and it can only be described through
the density-matrix formalism.

(b) The difference between a coherent state and an incoherent state is same as the difference between a pure state and
a mixed state. A coherent state is essentially a pure state and an incoherent state is essentially a mixed state. More
specifically, in a coherent state, the fields at different space-time points have a fixed phase relationship between
them. However, in an incoherent state the fields at different space-time points are not completely correlated in
their phases. Yes, a coherent state is indeed a pure state.

(c) A coherent-mode representation of a partially-coherent field is the representation of the field in terms of field-
modes that are completely coherent. One needs it because it is relatively much easier to describe the dynamics
of several pure states and then add them up than to describe the dynamics of a single incoherent state, as it
is. Diagonalizing a density matrix is the same as finding the coherent mode representation. There is a definite
relationship between the number of modes in the coherent-mode representation and the degree of coherence, which
is that the degree of coherence is inversely proportional to the number of modes in a coherent-mode representation.

(d) There is only one mode in the coherent-mode representation of a fully coherent field. An example is a monochro-
matic plane-wave field. Another example is a pulsed laser field in which all the frequency components have been
phase-locked.

(e) For a completely incoherent field, the number of modes is equal to the dimensionality of of the basis. For example,
in the momentum basis, a completely incoherent field will have infinite number of modes while in a polarization
basis the number of modes will be two.

Solution 3.6
A completely unpolarized polarization density matrix Junpol and a completely polarized polarization matrix Jpol,

are written as

Junpol = A

(
1 0
0 1

)
; Jpol =

(
B D
D∗ C

)
, (7)

where A ≥ 0, B ≥ 0 and C ≥ 0. Also BC −DD∗ = 0.
We need to prove that

J =

(
Jxx Jxy
Jyx Jyy

)
= Jpol + Junpol

is a unique decomposition. Equating the left and the right hand side of the above equation, we obtain the conditions
that

A+B = Jxx,

A+ C = Jyy,

D = Jxy,

D∗ = Jyx.

Substituting for B and C from the above conditions in BC −DD∗ = 0, we get

(Jxx −A)(Jyy −A)− JxyJyx = 0.
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This is also the eigenvalue equation of matrix J, solving which, we obtain two solutions for A

A1 =
tr J +

√
(tr J)2 − 4det J

2

A2 =
tr J−

√
(tr J)2 − 4det J

2

The two solutions of A are the eigenvalues of matrix J. Let us take the second solution A = A2. We find that in this
case,

B = Jxx −A2 =
2Jxx − tr J +

√
(tr J)2 − 4det J

2
=

(Jxx − Jyy) +
√

(Jxx − Jyy)2 + 4|Jxy|2
2

≥ 0.

In a similar manner it can be shown that for A = A2, C ≥ 0. Thus A = A2 is a valid solution. Next, we take A = A1.
In this case,

B = Jxx −A1 =
2Jxx − tr J−

√
(tr J)2 − 4det J

2
=

(Jxx − Jyy)−
√

(Jxx − Jyy)2 + 4|Jxy|2
2

≤ 0.

So, B is negative. Again, C can also be shown to be negative. However, for a valid solution the terms B and C need
to be positive. Therefore, A = A1 is not a valid solution. Thus, we have proved that the above decomposition is
unique.

Solution 3.7

(a) A general polarization matrix is written as

J =

(
Jxx Jxy
Jyx Jyy

)
The determinant of the matrix is given by detJ = JxxJyy − JxyJyx. We have

JxyJyx =
√
JxxJyyjxy ×

√
JxxJyyjyx = JxxJyyjxyj

∗
xy = JxxJyy|jxy|2

The quantity jxy is the polarization degree of coherence and 0 ≤ |jxy| ≤ 1. Thus we have

JxxJyy ≥ JxyJyx
or, JxxJyy − JxyJyx ≥ 0

or, detJ ≥ 0

(b) The polarization matrix can be written in terms of the Stokes parameters as

J =

(
Jxx Jxy
Jyx Jyy

)
=

1

2

(
S0 + S1 S2 + iS3

S2 − iS3 S0 − S1

)
The two sides of the above equation can be equated to give

Jxx =
1

2
(S0 + S1)

Jyy =
1

2
(S0 − S1)

Jxy =
1

2
(S2 + iS3)

Jyx =
1

2
(S2 − iS3)

5



Now, we have

detJ ≥ 0

or, JxxJyy − JxyJyx ≥ 0

or,
1

4
[(S0 + S1))(S0 − S1)− (S2 + iS3)(S2 − iS3)] ≥ 0

or, S2
0 − S2

1 − (S2
2 + S2

3) ≥ 0

or, S2
0 ≥ S2

1 + S2
2 + S2

3

(c)

P =

[
1− 4detJ

(trJ)2

]1/2

=

[
1− S2

0 − S2
1 − S2

2 − S2
3

S2
0

]1/2

=

[
S2

1 + S2
2 + S2

3

S2
0

]1/2

Solution 3.8

(a) The electric field corresponding to the first laser, which is polarized along x̂ direction can be written as E1 =
E1xx̂+ E1y ŷ = x̂. Thus E1x = 1 and E1y = 0. Similarly, the electric field corresponding to the first laser, which

is polarized along θ̂ direction can be written as E1 = E1xx̂ + E1y ŷ = cos θx̂ + sin θŷ and thus E1x = cos θ and
E1y = sin θ. The polarization matrix corresponding to these two fields are given by

J1 =

(
E1x

∗E1x E1x
∗E1y

E1y
∗E1x E1y

∗E1y

)
=

(
1 0
0 0

)
and J2 =

(
E2x

∗E2x E2x
∗E2y

E2y
∗E2x E2y

∗E2y

)
=

(
cos2 θ cos θ sin θ

sin θ cos θ sin2 θ

)
Now, since the two lasers are independent of each other the two fields will mix in an incoherent manner. Therefore,
the resultant field is a partially polarized field and is given by a polarization matrix J , which is the sum of the
two polarization matrices, that is,

J = J1 + J2 =

(
1 0
0 0

)
+

(
cos2 θ cos θ sin θ

sin θ cos θ sin2 θ

)
=

(
1 + cos2 θ cos θ sin θ
sin θ cos θ sin2 θ

)
The degree of polarization is therefore given by

P =

[
1− 4detJ

(trJ)2

]1/2

=

[
1− 4[(1 + cos2 θ) sin2 θ − cos2 θ sin2 θ]

(1 + cos2 θ + sin2 θ)2

]1/2

=

[
4− 4 sin2 θ

4

]1/2

= | cos θ|

(b) When θ = 0, P = 1, implying perfectly polarized light.

(c) When θ = π/2, P = 0, implying perfectly unpolarized light
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