
PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19

Solutions: Homework # 4

Solution 4.1: One-Photon Interference (2+2+4+2+2+2+2+2+2=20 marks)

(a) The Electric field at the detector is

Ê(+)(t) = k1Ê
(+)(t− t1) + k2Ê

(+)(t− t2)

Therefore, the probability is

PA = 〈〈ψ|Ê(−)(t)Ê(+)(t)|ψ〉〉e
= 〈〈ψ|[k∗1Ê(−)(t− t1) + k∗2Ê

(−)(t− t2)][k1Ê
(+)(t− t1) + k2Ê

(+)(t− t2)]|ψ〉〉e

Expanding and simplifying the above expression, we get

PA = |k1|2〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t1)|ψ〉〉e + |k2|2〈〈ψ|Ê(−)(t− t2)Ê(+)(t− t2)|ψ〉〉e
+ 2Rek∗1k2〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e

(b) Since Ê(−)(t) is the operator representing the negative frequency part of the field and is therefore defined as

Ê(−)(t) =

∫ 0

−∞
â(ω)e−iωtdω

Substituting ω′ → ω, we get

Ê(−)(t) =

∫ 0

∞
â(−ω′)eiω

′t(−dω′) =

∫ ∞
0

â(−ω′)eiω
′tdω′

Since Ê(t) is a Hermitian operator, we have â(−ω′) = â†(ω′) and therefore

Ê(−)(t) =

∫ ∞
0

â†(ω)eiωtdω.

(c)

Ê(+)(t− t2)|ψ〉 =

∫ ∞
0

â(ω)e−iω(t−t2)dω

∫ ∞
0

V (ω′)|ω′〉dω′ =

∫∫ ∞
0

V (ω′)â(ω)|ω′〉e−iω(t−t2)dωdω′

We know that â(ω)|ω′〉 = |vac〉δ(ω − ω′). Using this, we get

Ê(+)(t− t2)|ψ〉 =

∫∫ ∞
0

V (ω′)|vac〉δ(ω − ω′)e−iω(t−t2)dωdω′ =

∫ ∞
0

V (ω)e−iω(t−t2)|vac〉dω

Therefore, we can now write

〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e =

∫∫ ∞
0

〈V ∗(ω′)V (ω)〉eeiω
′(t−t1)e−iω(t−t2)dωdω′

For a stationary random source we have 〈V ∗(ω′)V (ω)〉e = S(ω)δ(ω − ω′) and

〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e =

∫∫ ∞
0

S(ω)δ(ω − ω′)eiω
′(t−t1)e−iω(t−t2)dωdω′

=

∫ ∞
0

S(ω)e−iωτdω,
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where τ = t1 − t2.

(d) The field is quasi-monochromatic, that is, the frequency-bandwidth ∆ω of the field is much small compared to
the central frequency ω0 of the field: ∆ω � ω0. So, let’s substitute ω = ω′ + ω0. We then get

〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t2)|ψ〉〉e =

∫ ∞
−ω0

S(ω′ + ω0)e−i(ω
′+ω0)τdω′, (1)

= e−iω0τ

∫ ∞
−ω0

S(ω′ + ω0)e−iω
′τdω′ (2)

= e−iω0τ

∫ ∞
−∞

S0(ω)−iωτdω, (3)

where S0(ω) = S(ω + ω0).

(e) Using the expression derived above, and substituting τ = 0, we get

〈〈ψ|Ê(−)(t− t1)Ê(+)(t− t1)|ψ〉〉e = 〈〈ψ|Ê(−)(t− t2)Ê(+)(t− t2)|ψ〉〉e =

∫ ∞
−∞

S0(ω)dω = I (4)

Substituting from Eqs. (??) and (??) into Eq. (??), we obtain the desired form for the one-photon interference
law.

PA = |k1|2I + |k1|2I + 2|k1||k2|I|γ(τ)| cos(ω0τ + φ).

(f) In the classical treatment, the interference is always explained in terms of the division of field-amplitude. The use
of analytic signal to separate out the positive and negative frequency parts of the field is only for mathematical
convenience; one actually only deals with real field in the classical treatment. On the other hand, in the quantum
treatment the negative and positive frequency parts of the field have definite meaning in terms of creation and
annihilation operators. when it comes to explaining interference of photons at a single photon level, the classical
description becomes inadequate since a single photon cannot be divided. So, while the classical description
based on division of amplitude implies division of energy as well, the quantum description based on division of
wavefunction does not imply division of energy.

(g) We have

γ(τ) =

∫∞
−∞ S0(ω)e−iωτdω∫∞
−∞ S0(ω)dω

.

Using the Gaussian integrals derived during the previous homework, we can show that

∫ ∞
−∞

S0(ω)e−iωτdω = e−τ
2∆ω2/2∫ ∞

−∞
S0(ω)dω = 1.

Therefore, γ(τ) = e−τ
2∆ω2/2. The Standard deviation of this distribution is 1/∆ω and thus the coherence time

is 1/∆ω.

(h) When τ � τc, γ(τ) → 0. This mean that the interference is no longer there. Classically, it means that the
two fields reaching the detector through the two alternatives have become incoherent. This is because once the
field points are separated out by more than the coherence time there no longer remains any correlation between
the electric field vibrations at the two points. Quantum mechanically, this means that photons arriving at the
detector through the two alternatives have now become distinguishable, that is, it is indeed possible in principle
to find out which alternative a photon came through.
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(i)

ω =
2πc

λ
; dω = −2πc∆λ

λ2

∆λ (in nm) ∆ω (in Hz) τc (in seconds)

1 3.84× 1012 2.6× 10−13

10 3.84× 1013 2.6× 10−14

100 3.84× 1014 2.6× 10−15

1.5 10
13

1. 10
13

5. 10
14

5. 10
14

1. 10
13

1.5 10
13

0.2

0.4

0.6

0.8

1.0

|γ(τ)|

τ (in seconds)

τ
c
=2.6 x 10-13

τ
c
=2.6 x 10-14

τ
c
=2.6 x 10-15

(j) In a continuous-wave field, the electric fields at different frequencies remain completely uncorrelated. Because of
the presence of multiple uncorrelated frequencies, the correlation in temporal domain exists only over a certain
range, which is called the coherence time.

If the electric field at different frequencies remain correlated then the entire field remains completely correlated,
irrespective of the frequency-bandwidth of the field. One such example is the pulsed laser-field in which all the
different frequencies are phase-locked.

Solution 4.2: Hong-Ou-Mandel Effect (5+5+10=20 marks)
The expression for coincidence count rate Rsi of two detectors Rs and Ri is given by:

Rsi = R1 +R2 + 2
√
R1R2γ(∆L)γ′(∆L′) cos(k0∆L+ kd∆L

′ + ∆φ) (5)

The expression for the one-photon detection probability RX at detector DX in a two-photon interference experiment
to be:

RX =

N∑
i=1

RXYi
(6)

where RXYi is the coincidence count rate of detectors DX and DYi , and Yi is the set of all possible locations where
the entangled partner of the photon detected at X can go to.

(a) Refer to figure ??(a) and (b). We find that ∆L = 0,∆L′ = 4x and ∆φ = π. Also, using R1 = R2 = R and
substituting in the formula for coincidence, we get:

Rsi = 2R[1− γ′(4x)]

(b) In order to calculate the count rate at individual detectors, we need to use the formula for one-photon detection
probability. Now for a photon arriving at detector Ds, the entangled pair can either go to the detector Di or
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FIG. 1: Hong-Ou-Mandel Setup

to the detector D′s. Please note that to calculate the one-photon count rate, we’ll have to consider detector D′s
because in principle the entangled pair can go there. Therefore the one-photon count rate at detector Ds will be
given by:

Rs = Rsi +Rss′

4



Fig. ??(c) has the two alternatives that will lead to a coincidence of detectors Ds and Ds′ . From the two-photon
path diagram, we get ∆L = 0,∆L′ = 4x and ∆φ = 0. Again, using R1 = R2 = R, and substituting in Eq. (??),
we get

Rsi = 2R[1 + γ′(4x)]

Therefore

Rs = Rsi +Rss′ = 4R,

that is the one-photon detection probability shows no interference at Di. We get the same result for the one-photon
detection probability at Di, that is, Ri = 4R.

(c) Fig. ??(d) shows the two alternatives that will lead to the coincidence counts of the two detectors. We find that
at x = 0, ∆L = y,∆L′ = 0 and ∆φ = 0. Therefore, we get using Eq. (??) the two photon count rate Rsi to be

Rsi = 2R[1 + γ(y) cos(k0y)] = 2R[1 + γ(y) cos(2
2π

λs0
y)],

where λs0= is the wavelength of each of the signal and idler photons. Thus we see that the fringe period is
2π/(2ks0) = λs0/2. Note that if we had used a classical light at λs0, instead of the two-photon N00N state at
λs0, the fringe period would be λs0 only. In fact, if we use the N -photon N00N state, the fringe period would be
λs0/N .

Solution 4.3: Double-pass experiment (10+5+5+10+5=35 marks)
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FIG. 2: Double-pass Setup

(a) Refer to Figure ??(b). We find that ∆L = xs + xi − 2xp, ∆L′ = 2xs − 2xi, and ∆φ = π. Therefore, using
Eq. (??), we find the coincidence count rate Rsi to be

Rsi = 2R[1− γ(xs + xi − 2xp)γ
′(2xs − 2xi) cos[k0(xs + xi − 2xp)]]
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Also, for every photon arriving at Ds, the only place that the entangled partner can go to is the idler detector.
Similarly, for every photon arriving at Di, the entangled partner can only go to the signal detector. Thus, we get

Rs = Ri = Rsi

So, we find that whatever interference profile we see in coincidence will be seen in the photon count rates of the
individual detectors.

(b) We need to make ∆L′ = 2xs − 2xi = 0, that is, xs = xi. This means that we need to move both the signal and
idler mirrors in the same direction and with the same amplitude.

(c) For this, we need ∆L = xs + xi = 0, that is, xs = −xi. This means that we need to move both the signal idler
mirrors in the opposite directions but with the same amplitude.

(d) In order to see a dip in the coincidence ∆L = xs + xi − 2xp = 0, such that the coincidence count rate is given by

Rsi = 2R[1− γ′(2xs − 2xi)]

Here the plot of Rsi versus 2xs − 2xi is in the form of a dip profile, which is the Hong-Ou-Mandel type profile.
In order to get a hump one needs to increase xp by λ such that ∆L = xs + xi − 2xp = λ. And therefore,

Rsi = 2R[1− γ′(2xs − 2xi) cos[k0(π)]] = 2R[1 + γ′(2xs − 2xi)]

The above profile is a hump profile. These dip/hump profile cannot be explained in terms of the photon-bunching
since there is no mixing of photons at a beam splitter in the double-pass setup.

(e) In this experiment, the entangled photon have only one choice, which is that one of them go the signal detector
and the other one go to the idler detector. There are no other possibilities. However the photon-number needs to
be conserved and this requires that a modulation in the coincidence count is followed by an equal and opposite
modulations in the pump photon count. As a result, when the coincidence count rate is at its minimum, no pump
photon gets down-converted.

Solution 4.4: Two-photon Coherence function (10+5+10=25 marks)

(a) Refer to Fig. ??(b). Since the coincidence detection system is much faster than the time delay between the two
arms of the interferometer, there will be only two alternatives that will contribute to the coincidence detection.
For these two alternatives ∆L = x, ∆L′ = 0, and ∆φ = 5π. Therefore the coincidence count rate is

Rsi = 2R[1− γ(x) cos(k0x)]

Here we have made one other assumption that x << lpcoh. For calculating the one-photon count rate Rs, we note
that Rs = Rsi +Rss′ . Refer to Fig. ??(c). We find the for Rss′ , ∆L = x, ∆L′ = 0, and ∆φ = 6π. Therefore,

Rss′ = 2R[1 + γ(x) cos(k0x)],

And thus Rs = Rss +Rss′ = 4R

We see that the one-photon count rates of the two detectors do not show any interference pattern.

(b) When a minimum is observed in the coincidence count rate, the entangled photons both leave through either one
of the output ports of the interferometer.

(c) Figure ?? represent one another possible setup for making a two-photon N00N state. We can see that the state
of the two-photons in this setup is : |ψ〉 = 1√

2
[|2〉k1 |0〉k2 + |0〉k1 |2〉k2 ]
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FIG. 3: Two-photon Michaelson Interferometer
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FIG. 4: Two-photon Michaelson Interferometer
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