Solutions: Homework \# 5

Solutions 5.1: Misc Questions ($5+5=10$ marks)

(a) Two-photon coherence refers to the ability with which one could predict the field vibrations at a pair of spacetime points within the field, given the field vibrations at some reference pair of space-time points. Again, experimentally, two-photon coherence refers to the ability of a field to give rise to two-photon interference.
(b) This means that if the orbital angular momentum of the photon is measured, one would find the photon to have the orbital angular momentum $l \hbar$ with probability $\left|c_{l}\right|^{2}$

Solutions 5.2: Spatial two-photon wave-function ($5+20+5+10=40$ marks)

(a) The signal electric field operator at the detectors can be written as

$$
\hat{E}_{s}^{(+)}\left(\boldsymbol{r}_{s}\right)=\int d \boldsymbol{q} \hat{a}_{s}(\boldsymbol{q}) e^{i\left(\boldsymbol{q} \cdot \boldsymbol{\rho}_{s}-k_{z} z\right)}
$$

We consider only the collinear down-conversion and thus make paraxial approximations. Therefore, we can write

$$
k_{z}=\sqrt{k_{s}^{2}-q^{2}}=k_{s} \sqrt{1-\frac{q^{2}}{k_{s}^{2}}} \approx k_{s} \sqrt{1-\frac{q^{2}}{2 k_{s}^{2}}}=k_{s}-\frac{q^{2}}{2 k_{s}}
$$

Substituting this is the above equation and doing a similar approximation for the idler field we get,

$$
\begin{aligned}
& \hat{E}_{s}^{(+)}\left(\boldsymbol{r}_{s}\right)=e^{i k_{s} z} \int d \boldsymbol{q} \hat{a}_{s}(\boldsymbol{q}) e^{i\left(\boldsymbol{q} \cdot \boldsymbol{\rho}_{s}-q^{2} z / 2 k_{s}\right)}, \\
& \hat{E}_{i}^{(+)}\left(\boldsymbol{r}_{i}\right)=e^{i k_{i} z} \int d \boldsymbol{q}^{\prime} \hat{a}_{i}\left(\boldsymbol{q}^{\prime}\right) e^{i\left(\boldsymbol{q}^{\prime} \cdot \boldsymbol{\rho}_{i}-q^{\prime 2} z / 2 k_{i}\right)},
\end{aligned}
$$

(b) For the one-dimensional version of this problem, we have

$$
\begin{aligned}
& \left|\psi_{\operatorname{tp}}\right\rangle=A \iint_{\infty}^{\infty} d k_{s x} d k_{i x} V\left(k_{s x}+k_{i x}\right)\left|k_{s x}\right\rangle\left|k_{i x}\right\rangle \\
& \hat{E}_{s}^{(+)}\left(x_{s}\right)=e^{i k_{s} z} \int d k_{s x} \hat{a}_{s}\left(k_{s x}\right) e^{i\left(k_{s x} x_{s}-k_{s x}^{2} z / 2 k_{s}\right)}
\end{aligned}
$$

We need to find the two-photon probability amplitude $\psi_{\text {tp }}\left(x_{s}, x_{i}\right)=\langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\text {tp }}\right\rangle$. Using $\hat{a}_{s}\left(k_{s x^{\prime}}\right)\left|k_{s x}\right\rangle=\delta\left(k_{s x}-k_{s x^{\prime}}\right)$ and $\hat{a}_{i}\left(k_{i x^{\prime}}\right)\left|k_{i x}\right\rangle=\delta\left(k_{i x}-k_{i x^{\prime}}\right)$, and integrating out the Dirac-delta functions we get,

$$
\begin{aligned}
& \langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& \quad=A e^{i\left(k_{s}+k_{i}\right) z} \iint_{-\infty}^{\infty} d k_{s x} d k_{i x} V\left(k_{s x}+k_{i x}\right) \exp \left[i\left(k_{s x} x_{s}+k_{i x} x_{i}\right)-i\left(\frac{k_{s x}^{2}}{2 k_{s}}+\frac{k_{i x}^{2}}{2 k_{i}}\right)\right]
\end{aligned}
$$

Now assume degenerate down-conversion, that is, $k_{s}=k_{i}=k_{0} / 2$. Also substitute for the Gaussian pump field: $V\left(k_{s x}+k_{i x}\right)=\exp \left[-\frac{w_{0}^{2}\left(k_{s x}+k_{i x}\right)^{2}}{4}\right]$. We now get

$$
\begin{aligned}
& \langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& \quad=A e^{i k_{0} z} \int_{-\infty}^{\infty} d k_{i x} \exp \left[i k_{i x} x_{i}-i \frac{k_{i x}^{2}}{k_{0}}-\frac{w_{0}^{2} k_{i x}^{2}}{4}\right] \int_{-\infty}^{\infty} d k_{s x} \exp \left[i k_{s x} x_{s}-i \frac{k_{s x}^{2}}{k_{0}}-\frac{w_{0}^{2} k_{s x}^{2}}{4}-\frac{w_{0}^{2} k_{s x} k_{s x}}{z}\right]
\end{aligned}
$$

Let's first solve the second integral. Using the Gaussian integration formula that we already derived in the earlier homework: $\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=(\pi / \alpha)^{1 / 2} e^{\beta^{2} / 4 \alpha}$, we get

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d k_{s x} \exp \left[i k_{s x} x_{s}-i \frac{k_{s x}^{2}}{k_{0}}-\frac{w_{0}^{2} k_{s x}^{2}}{4}-\frac{w_{0}^{2} k_{s x} k_{s x}}{z}\right] \\
& =\left(\frac{\pi}{\alpha}\right)^{1 / 2} \exp \left[-\frac{x_{s}^{2}}{4 \alpha}\right] \exp \left[\frac{w_{0}^{4} k_{i x}^{2}-4 i w_{0}^{2} x_{s} k_{i x}}{16 \alpha}\right]
\end{aligned}
$$

where $\alpha=\left(\frac{i z}{k_{0}}+\frac{w_{0}^{2}}{4}\right)$. Putting the above integration result into the expression for two-photon probability amplitude we get,

$$
\begin{aligned}
& \langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& \quad=A e^{i k_{0} z}\left(\frac{\pi}{\alpha}\right)^{1 / 2} \exp \left[-\frac{x_{s}^{2}}{4 \alpha}\right] \int_{-\infty}^{\infty} d k_{i x} \exp \left[i k_{i x} x_{i}-i \frac{k_{i x}^{2}}{k_{0}}-\frac{w_{0}^{2} k_{i x}^{2}}{4}+\frac{w_{0}^{4} k_{i x}^{2}-4 i w_{0}^{2} x_{s} k_{i x}}{16 \alpha}\right]
\end{aligned}
$$

Using the same Gaussian integral formula as above the above equation can be shown to be

$$
\begin{aligned}
& \langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& \quad=A e^{i k_{0} z}\left(\frac{\pi}{\alpha}\right)^{1 / 2} \exp \left[-\frac{x_{s}^{2}}{4 \alpha}\right]\left(\frac{\pi}{\alpha-w_{0}^{4} /(16 \alpha)}\right)^{1 / 2} \exp \left[-\frac{\left(x_{i}-w_{0}^{2} x_{s} /(4 \alpha)\right)^{2}}{4\left(\alpha-w_{0}^{4} /(16 \alpha)\right)^{2}}\right]
\end{aligned}
$$

The above expression can be simplified and be shown to be

$$
\begin{aligned}
& \langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& \quad=A e^{i k_{0} z}\left(\frac{16 \pi^{2}}{16 \alpha^{2}-w_{0}^{4}}\right)^{1 / 2} \exp \left[-\frac{16 \alpha^{2}\left(x_{s}^{2}+x_{i}^{2}\right)-8 \alpha w_{0}^{2} x_{i} x_{s}}{4 \alpha\left(16 \alpha^{2}-w_{0}^{4}\right)}\right]
\end{aligned}
$$

This can be further simplified and rearranged to get he desired form

$$
\begin{aligned}
& \langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& \quad=A e^{i k_{0} z}\left(\frac{16 \pi^{2}}{16 \alpha^{2}-w_{0}^{4}}\right)^{1 / 2} \exp \left[-\frac{\left(x_{s}+x_{i}\right)^{2}}{4 w^{2}(z)}\right] \exp \left[\frac{i\left(x_{s}+x_{i}\right)^{2} z}{2 k_{0} w_{0}^{2} w^{2}(z)}\right] \exp \left[\frac{i k_{0}\left(x_{s}-x_{i}\right)^{2}}{8 z}\right]
\end{aligned}
$$

(c) The two photons probability is given by

$$
\begin{aligned}
R\left(x_{s}, x_{i}\right) & =\left\langle\psi_{\mathrm{tp}}\right| \hat{E}_{s}^{(-)}\left(x_{s}\right) \hat{E}_{i}^{(-)}\left(x_{i}\right) \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& =\left\langle\psi_{\mathrm{tp}}\right| \hat{E}_{s}^{(-)}\left(x_{s}\right) \hat{E}_{i}^{(-)}\left(x_{i}\right)|\operatorname{vac}\rangle\langle\operatorname{vac}| \hat{E}_{i}^{(+)}\left(x_{i}\right) \hat{E}_{s}^{(+)}\left(x_{s}\right)\left|\psi_{\mathrm{tp}}\right\rangle \\
& =\psi_{\mathrm{tp}}^{\dagger}\left(x_{s}, x_{i}\right) \psi_{\mathrm{tp}}\left(x_{s}, x_{i}\right) \\
& =\left|\psi_{\mathrm{tp}}\left(x_{s}, x_{i}\right)\right|^{2} \rightarrow A \exp \left[-\frac{\left(x_{s}+x_{i}\right)^{2}}{2 w^{2}(z)}\right]
\end{aligned}
$$

(d) Figure shows the density plot of the probability distribution. The plot is for $\lambda=800 \mathrm{~nm}, w_{0}=2 \mathrm{~mm}$, and $z=$ 1 m . We find that at a particular z , given that the signal photon is detected at some x_{s}, the range over which the idler has a finite probability of getting detected is $w(z)$. This is the correlation width of the down-converted photons. We find that this correlation width is equal to the width of the Gaussian beam at z. As z increases, the width $w(z)$ increases and we find that the position-correlation width increases in the same proportion.

Solutions 5.3: Spatial Coherence and Entanglement ($5+5+5+5+5+5=30$ marks)

(a) The diagonal terms of the two-qubit density matrix are the probabilities with which the two photons are found in different two-photon alternatives. The two-photon spectral density $S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)$ is proportional to the probability

with which the two photons are found at the pair of the points $\boldsymbol{\rho}_{s 1}$ and $\boldsymbol{\rho}_{i 1}$. In the above problem, the qubits are being defined using the spatial locations of the photons and therefore the diagonal terms of the two-qubit density matrix are proportional to the two-photon photon spectral densities.
(b) The off-diagonal terms of the two-qubit density matrix refers to the coherence between the two two-photon alternatives that make the two-qubit state. The two-photon cross spectral density quantifies the correlations between the pair of space-time points $\left(\boldsymbol{\rho}_{s 1}, \boldsymbol{\rho}_{i 1}\right)$ and $\left(\boldsymbol{\rho}_{s 2}, \boldsymbol{\rho}_{i 2}\right)$. And therefore $c=d^{*}=\eta k_{1} k_{2} W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)$.
(c) For a given two-qubit density matrix ρ, the concurrence $C(\rho)$ is given by $C(\rho)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}$. Here the λ_{i} s are the eigenvalues, in descending order, of matrix $\zeta=\rho\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)$, with $\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ being the usual Pauli operator and ρ^{*} the complex conjugate of ρ. For the density matrix $\rho_{\text {qubit }}$, the matrix ζ becomes

$$
\zeta=\left(\begin{array}{cccc}
a b+c d & 0 & 0 & 2 a c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 b d & 0 & 0 & a b+c d
\end{array}\right)
$$

The eigenvalues of ζ in descending order are:

$$
\begin{aligned}
& \lambda_{1}=(\sqrt{a b}+|c|)^{2}, \\
& \lambda_{2}=(\sqrt{a b}-|c|)^{2}, \\
& \lambda_{3}=0 \text { and } \\
& \lambda_{4}=0 ;
\end{aligned}
$$

where we have substituted $c=d^{*}$. Thus, the concurrence $C\left(\rho_{\text {qubit }}\right)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}$ is given by

$$
C\left(\rho_{\text {qubit }}\right)=2|c|=\frac{2 k_{1} k_{2}\left|W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)\right|}{k_{1}^{2} S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+k_{2}^{2} S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)} .
$$

We thus find that for a spatial two-qubit state, concurrence is proportional to the magnitude of the two-photon cross-spectral density at the two pairs of transverse positions that define the two-qubit state.
(d) The visibility V of the two-photon interference fringes is given by

$$
V=\frac{R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)_{\max }-R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)_{\min }}{R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)_{\max }+R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)_{\min }}
$$

The max and min correspond to the situations when the cosine term is +1 and -1 , respectively. Thus we get:

$$
V=\frac{2 k_{1} k_{2} \sqrt{S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)}}{k_{1}^{2} S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+k_{2}^{2} S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)} \mu^{(2)}(\Delta \boldsymbol{\rho}, z) .
$$

Comparing the visibility with the concurrence we find that $V=C\left(\rho_{\text {qubit }}\right)$.
(e) When $a=b$ and $|c|=|d|=1 / 2$, we get $C\left(\rho_{\text {qubit }}\right)=1$. This means that the two-qubit state is maximally entangled. This can be achieved when (i) the probabilities for both the two-photon alternatives that make the two-qubit state are the same and (ii) the two two-photon alternatives are completely coherent, that is, indistinguishable with one another.
(f) When $a=b$ and $|c|=|d|=0$, we get $C\left(\rho_{\text {qubit }}\right)=0$. This means that the two-qubit state is completely unentangled. This is the situation whenever, the two two-photon alternatives that make the two-qubit state are completely incoherent, that is, distinguishable from one another.

Solutions 5.4: Concurrence of an X-matrix Spatial Coherence and Entanglement $(2+6+2+10=20$ marks $)$

(a) The dinsity matrix corresponding to $\left|\psi_{1}\right\rangle$ is

$$
\rho_{1}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\left(\begin{array}{cccc}
a^{2} & 0 & 0 & a b \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
a b & 0 & 0 & b^{2}
\end{array}\right)
$$

(b) The concurrence of two-qubit density matrix ρ is calculated as follow. Take the two-qubit density matrix ρ and construct the density matrix $\tilde{\rho}$ using the spin flip operation

$$
\tilde{\rho}=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right),
$$

where $\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ is the Pauli's matrix. Construct a new matrix $\rho \tilde{\rho}$ and find its eigenvalues and arrange them in descending order $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$. The concurrence of the two-qubit state is then given as

$$
C(\rho)=\max \left\{0, \sqrt{\lambda}_{1}-\sqrt{\lambda}_{2}-\sqrt{\lambda}_{3}-\sqrt{\lambda}_{4}\right\} .
$$

For the above density matrix ρ_{1}, we have

$$
\rho_{1} \tilde{\rho}_{1}=\left(\begin{array}{cccc}
2 a^{2} b^{2} & 0 & 0 & 2 a^{3} b \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 a b^{3} & 0 & 0 & 2 a^{2} b^{2}
\end{array}\right)
$$

The eigenvalues of this matrix in the descending order are $\left(4 a^{2} b^{2}, 0,0,0\right)$. Therefore the concurrence is $2|a b|$.
(c) The density matrix in this case is

$$
\rho=\frac{1}{2}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{2}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|=\frac{1}{2}\left(\begin{array}{cccc}
a^{2} & 0 & 0 & a b \\
0 & p^{2} & p q & 0 \\
0 & p q & q^{2} & 0 \\
a b & 0 & 0 & b^{2}
\end{array}\right)
$$

(d) In order to calculate the concurrence we first calculate $\tilde{\rho}$, which can be shown to be

$$
\rho \tilde{\rho}=\frac{1}{2}\left(\begin{array}{cccc}
a^{2} b^{2} & 0 & 0 & a^{3} b \\
0 & p^{2} q^{2} & p^{3} q & 0 \\
0 & p q^{3} & p^{2} q^{2} & 0 \\
a b^{3} & 0 & 0 & a^{2} b^{2}
\end{array}\right)
$$

The eigenvalues of this matrix are $\left(a^{2} b^{2}, p^{2} q^{2}, 0,0\right)$. Therefore the concurrence is $\max \{|a b|-|p q|,|p q|-|a b|\}$.

