
PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19

Solutions: Homework # 5

Solutions 5.1: Misc Questions (5+5=10 marks)

(a) Two-photon coherence refers to the ability with which one could predict the field vibrations at a pair of space-
time points within the field, given the field vibrations at some reference pair of space-time points. Again,
experimentally, two-photon coherence refers to the ability of a field to give rise to two-photon interference.

(b) This means that if the orbital angular momentum of the photon is measured, one would find the photon to have
the orbital angular momentum l~ with probability |cl|2

Solutions 5.2: Spatial two-photon wave-function (5+20+5+10=40 marks)

(a) The signal electric field operator at the detectors can be written as

Ê(+)
s (rs) =

∫
dqâs(q)ei(q·ρs−kzz)

We consider only the collinear down-conversion and thus make paraxial approximations. Therefore, we can write

kz =
√
k2s − q2 = ks

√
1− q2

k2s
≈ ks

√
1− q2

2k2s
= ks −

q2

2ks

Substituting this is the above equation and doing a similar approximation for the idler field we get,

Ê(+)
s (rs) = eiksz

∫
dqâs(q)ei(q·ρs−q2z/2ks),

Ê
(+)
i (ri) = eikiz

∫
dq′âi(q

′)ei(q
′·ρi−q′2z/2ki),

(b) For the one-dimensional version of this problem, we have

|ψtp〉 = A

∫∫ ∞
∞

dksxdkixV (ksx + kix)|ksx〉|kix〉

Ê(+)
s (xs) = eiksz

∫
dksxâs(ksx)ei(ksxxs−k2sxz/2ks)

We need to find the two-photon probability amplitude ψtp(xs, xi) = 〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉. Using

âs(ksx′)|ksx〉 = δ(ksx − ksx′) and âi(kix′)|kix〉 = δ(kix − kix′), and integrating out the Dirac-delta functions
we get,

〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= Aei(ks+ki)z
∫∫ ∞
−∞

dksxdkixV (ksx + kix) exp

[
i(ksxxs + kixxi)− i

(
k2sx
2ks

+
k2ix
2ki

)]
Now assume degenerate down-conversion,that is, ks = ki = k0/2. Also substitute for the Gaussian pump field:

V (ksx + kix) = exp
[
−w

2
0(ksx+kix)

2

4

]
. We now get

〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= Aeik0z
∫ ∞
−∞

dkix exp

[
ikixxi − i

k2ix
k0
− w2

0k
2
ix

4

] ∫ ∞
−∞

dksx exp

[
iksxxs − i

k2sx
k0
− w2

0k
2
sx

4
− w2

0ksxksx
z

]
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Let’s first solve the second integral. Using the Gaussian integration formula that we already derived in the earlier

homework:
∫∞
−∞ e−αx

2+βxdx = (π/α)1/2eβ
2/4α, we get∫ ∞

−∞
dksx exp

[
iksxxs − i

k2sx
k0
− w2

0k
2
sx

4
− w2

0ksxksx
z

]
=
(π
α

)1/2
exp

[
− x

2
s

4α

]
exp

[
w4

0k
2
ix − 4iw2

0xskix
16α

]
where α =

(
iz
k0

+
w2

0

4

)
. Putting the above integration result into the expression for two-photon probability

amplitude we get,

〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= Aeik0z
(π
α

)1/2
exp

[
− x

2
s

4α

] ∫ ∞
−∞

dkix exp

[
ikixxi − i

k2ix
k0
− w2

0k
2
ix

4
+
w4

0k
2
ix − 4iw2

0xskix
16α

]
Using the same Gaussian integral formula as above the above equation can be shown to be

〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= Aeik0z
(π
α

)1/2
exp

[
− x

2
s

4α

](
π

α− w4
0/(16α)

)1/2

exp

[
− (xi − w2

0xs/(4α))2

4(α− w4
0/(16α))2

]
The above expression can be simplified and be shown to be

〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= Aeik0z
(

16π2

16α2 − w4
0

)1/2

exp

[
−16α2(x2s + x2i )− 8αw2

0xixs
4α(16α2 − w4

0)

]
This can be further simplified and rearranged to get he desired form

〈vac|Ê(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= Aeik0z
(

16π2

16α2 − w4
0

)1/2

exp

[
− (xs + xi)

2

4w2(z)

]
exp

[
i(xs + xi)

2z

2k0w2
0w

2(z)

]
exp

[
ik0(xs − xi)2

8z

]
(c) The two photons probability is given by

R(xs, xi) = 〈ψtp|Ê(−)
s (xs)Ê

(−)
i (xi)Ê

(+)
i (xi)Ê

(+)
s (xs)|ψtp〉

= 〈ψtp|Ê(−)
s (xs)Ê

(−)
i (xi)|vac〉〈vac|Ê(+)

i (xi)Ê
(+)
s (xs)|ψtp〉

= ψ†tp(xs, xi)ψtp(xs, xi)

= |ψtp(xs, xi)|2 → A exp

[
− (xs + xi)

2

2w2(z)

]
(d) Figure shows the density plot of the probability distribution. The plot is for λ = 800 nm, w0 = 2 mm, and z =

1 m. We find that at a particular z, given that the signal photon is detected at some xs, the range over which
the idler has a finite probability of getting detected is w(z). This is the correlation width of the down-converted
photons. We find that this correlation width is equal to the width of the Gaussian beam at z. As z increases, the
width w(z) increases and we find that the position-correlation width increases in the same proportion.

Solutions 5.3: Spatial Coherence and Entanglement (5+5+5+5+5+5=30 marks)

(a) The diagonal terms of the two-qubit density matrix are the probabilities with which the two photons are found in
different two-photon alternatives. The two-photon spectral density S(2)(ρ1, z) is proportional to the probability

2



x
i 
 (in m)

x
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 (in m)

with which the two photons are found at the pair of the points ρs1 and ρi1. In the above problem, the qubits are
being defined using the spatial locations of the photons and therefore the diagonal terms of the two-qubit density
matrix are proportional to the two-photon photon spectral densities.

(b) The off-diagonal terms of the two-qubit density matrix refers to the coherence between the two two-photon
alternatives that make the two-qubit state. The two-photon cross spectral density quantifies the correlations
between the pair of space-time points (ρs1,ρi1) and (ρs2,ρi2). And therefore c = d∗ = ηk1k2W

(2)(ρ1,ρ2, z).

(c) For a given two-qubit density matrix ρ, the concurrence C(ρ) is given by C(ρ) = max{0,
√
λ1−
√
λ2−
√
λ3−
√
λ4}.

Here the λis are the eigenvalues, in descending order, of matrix ζ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), with σy = (
0 −i
i 0

)

being the usual Pauli operator and ρ∗ the complex conjugate of ρ. For the density matrix ρqubit, the matrix ζ
becomes

ζ =

 ab+ cd 0 0 2ac
0 0 0 0
0 0 0 0

2bd 0 0 ab+ cd

 .

The eigenvalues of ζ in descending order are:

λ1 = (
√
ab+ |c|)2,

λ2 = (
√
ab− |c|)2,

λ3 = 0 and

λ4 = 0;

where we have substituted c = d∗. Thus, the concurrence C(ρqubit) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} is given

by

C(ρqubit) = 2|c| = 2k1k2|W (2)(ρ1,ρ2, z)|
k21S

(2)(ρ1, z) + k22S
(2)(ρ2, z)

.

We thus find that for a spatial two-qubit state, concurrence is proportional to the magnitude of the two-photon
cross-spectral density at the two pairs of transverse positions that define the two-qubit state.
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(d) The visibility V of the two-photon interference fringes is given by

V =
Rsi(rs, ri)max −Rsi(rs, ri)min

Rsi(rs, ri)max +Rsi(rs, ri)min

The max and min correspond to the situations when the cosine term is +1 and -1, respectively. Thus we get:

V =
2k1k2

√
S(2)(ρ1, z)S(2)(ρ2, z)

k21S
(2)(ρ1, z) + k22S

(2)(ρ2, z)
µ(2)(∆ρ, z).

Comparing the visibility with the concurrence we find that V = C(ρqubit).

(e) When a = b and |c| = |d| = 1/2, we get C(ρqubit) = 1. This means that the two-qubit state is maximally entangled.
This can be achieved when (i) the probabilities for both the two-photon alternatives that make the two-qubit
state are the same and (ii) the two two-photon alternatives are completely coherent, that is, indistinguishable
with one another.

(f) When a = b and |c| = |d| = 0, we get C(ρqubit) = 0. This means that the two-qubit state is completely un-
entangled. This is the situation whenever, the two two-photon alternatives that make the two-qubit state are
completely incoherent, that is, distinguishable from one another.

Solutions 5.4: Concurrence of an X-matrix Spatial Coherence and Entanglement
(2+6+2+10=20 marks)

(a) The dinsity matrix corresponding to |ψ1〉 is

ρ1 = |ψ1〉〈ψ1| =

 a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2


(b) The concurrence of two-qubit density matrix ρ is calculated as follow. Take the two-qubit density matrix ρ and

construct the density matrix ρ̃ using the spin flip operation

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy),

where σy =

(
0 −i
i 0

)
is the Pauli’s matrix. Construct a new matrix ρρ̃ and find its eigenvalues and arrange

them in descending order (λ1, λ2, λ3, λ4). The concurrence of the two-qubit state is then given as

C(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}.

For the above density matrix ρ1, we have

ρ1ρ̃1 =

 2a2b2 0 0 2a3b
0 0 0 0
0 0 0 0

2ab3 0 0 2a2b2


The eigenvalues of this matrix in the descending order are (4a2b2, 0, 0, 0). Therefore the concurrence is 2|ab|.

(c) The density matrix in this case is

ρ =
1

2
|ψ1〉〈ψ1|+

1

2
|ψ2〉〈ψ2| =

1

2

 a2 0 0 ab
0 p2 pq 0
0 pq q2 0
ab 0 0 b2


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(d) In order to calculate the concurrence we first calculate ρ̃, which can be shown to be

ρρ̃ =
1

2

 a2b2 0 0 a3b
0 p2q2 p3q 0
0 pq3 p2q2 0
ab3 0 0 a2b2


The eigenvalues of this matrix are (a2b2, p2q2, 0, 0). Therefore the concurrence is max{|ab| − |pq|, |pq| − |ab|}.
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