PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19

Solutions: Homework # 5

Solutions 5.1: Misc Questions (54+5=10 marks)
(a) Two-photon coherence refers to the ability with which one could predict the field vibrations at a pair of space-

time points within the field, given the field vibrations at some reference pair of space-time points. Again,
experimentally, two-photon coherence refers to the ability of a field to give rise to two-photon interference.

(b) This means that if the orbital angular momentum of the photon is measured, one would find the photon to have
the orbital angular momentum (A with probability |c;|?

Solutions 5.2: Spatial two-photon wave-function (5+20+45410=40 marks)

(a) The signal electric field operator at the detectors can be written as
E(+) /dqa )eil@ps—h=2)

We consider only the collinear down-conversion and thus make paraxial approximations. Therefore, we can write
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Substituting this is the above equation and doing a similar approximation for the idler field we get,
B (r) = e [ daa(g)etee o,
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(b) For the one-dimensional version of this problem, we have
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We need to find the two-photon probability amplitude ¢, (zs,z;) = (vac|EAi(+)(xi)E§+)(xs)\wtp>. Using
Gs(ksz)|ksz) = 0(ksy — kszr) and @;(kip)|kiz) = 6(kiz — kiz), and integrating out the Dirac-delta functions
we get,
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Now assume degenerate down-conversion,that is, ks = k; = ko/2. Also substitute for the Gaussian pump field:
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V(ksy + ki) = exp [—M} We now get
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(c)

(d)

Let’s first solve the second integral. Using the Gaussian integration formula that we already derived in the earlier
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homework: [* e~ +52dy = (m/a)1/2eP /40 we get
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where a = (% + %) Putting the above integration result into the expression for two-photon probability

amplitude we get,
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Using the same Gaussian integral formula as above the above equation can be shown to be
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The above expression can be simplified and be shown to be
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This can be further simplified and rearranged to get he desired form
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The two photons probability is given by
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Figure shows the density plot of the probability distribution. The plot is for A = 800 nm, wy = 2 mm, and z =
1 m. We find that at a particular z, given that the signal photon is detected at some z,, the range over which
the idler has a finite probability of getting detected is w(z). This is the correlation width of the down-converted
photons. We find that this correlation width is equal to the width of the Gaussian beam at z. As z increases, the
width w(z) increases and we find that the position-correlation width increases in the same proportion.

Solutions 5.3: Spatial Coherence and Entanglement (5+5+5+5+5+5=30 marks)

(a)

The diagonal terms of the two-qubit density matrix are the probabilities with which the two photons are found in
different two-photon alternatives. The two-photon spectral density S(?) (p1, 2z) is proportional to the probability



(b)

(c)
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with which the two photons are found at the pair of the points ps; and p;1. In the above problem, the qubits are
being defined using the spatial locations of the photons and therefore the diagonal terms of the two-qubit density
matrix are proportional to the two-photon photon spectral densities.

The off-diagonal terms of the two-qubit density matrix refers to the coherence between the two two-photon
alternatives that make the two-qubit state. The two-photon cross spectral density quantifies the correlations
between the pair of space-time points (ps1, pi1) and (ps2, pi2). And therefore ¢ = d* = nk; kQI/V(2)(p17 P2, 2).

For a given two-qubit density matrix p, the concurrence C(p) is given by C(p) = max{0, v A1 —vAz —vA3—v s}
Here the \;s are the eigenvalues, in descending order, of matrix { = p(o, ® o,)p* (0, ® 0y), with o, = ( (2 BZ )
being the usual Pauli operator and p* the complex conjugate of p. For the density matrix pqubit, the matrix ¢
becomes

ab+cd 0 0 2ac
_ 0 00 0
¢= 0 00 0

2bd 0 0 ab+ cd

The eigenvalues of ¢ in descending order are:

A= (Vab+|e])?,
Ao = (Vab — |c|)?,
A3 = 0 and

)\4 = 0;

where we have substituted ¢ = d*. Thus, the concurrence C(pqubit) = max{0, VA1 — VA2 — vV Az — VA } is given
by
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We thus find that for a spatial two-qubit state, concurrence is proportional to the magnitude of the two-photon
cross-spectral density at the two pairs of transverse positions that define the two-qubit state.



(d) The visibility V' of the two-photon interference fringes is given by
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The max and min correspond to the situations when the cosine term is +1 and -1, respectively. Thus we get:
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Comparing the visibility with the concurrence we find that V' = C(pqubit)-

(€) Whena = band |¢| = |d| = 1/2, we get C(pqubit) = 1. This means that the two-qubit state is maximally entangled.
This can be achieved when (i) the probabilities for both the two-photon alternatives that make the two-qubit
state are the same and (ii) the two two-photon alternatives are completely coherent, that is, indistinguishable
with one another.

f) When a = b and |c| = |d| = 0, we get C(pqubit) = 0. This means that the two-qubit state is completely un-
q
entangled. This is the situation whenever, the two two-photon alternatives that make the two-qubit state are
completely incoherent, that is, distinguishable from one another.

Solutions 5.4: Concurrence of an X-matrix Spatial Coherence and Entanglement
(24-6+2+10=20 marks)

(a) The dinsity matrix corresponding to [11) is

a’> 0 0 ab
0000
P1=|¢1><¢1|: 0000
ab 0 0 b2

(b) The concurrence of two-qubit density matrix p is calculated as follow. Take the two-qubit density matrix p and
construct the density matrix p using the spin flip operation

p=(oy®ay)p*(oy @0y),
0 —1

0
them in descending order (A1, A2, A3, Ag). The concurrence of the two-qubit state is then given as

C(p) = max{0, Vi — V2 — VA3 — VA4 }.

where o, = is the Pauli’s matrix. Construct a new matrix pp and find its eigenvalues and arrange

For the above density matrix p;, we have

2026 0 0 2a%b
- 0 00 O
p1pP1 = 0O 00 0
2ab> 0 0 2a2b?

The eigenvalues of this matrix in the descending order are (4a?b2,0,0,0). Therefore the concurrence is 2|ab|.

(c) The density matrix in this case is

a> 0 0 ab
1 1 _ 10 p*pg O
P—2|¢1><¢1|+2|¢2><¢2|—2 0 pg ¢ 0
ab 0 0 b?



(d) In order to calculate the concurrence we first calculate p, which can be shown to be

The eigenvalues of this matrix are (a2, p?¢?,0,0). Therefore the concurrence is max{|ab| — |pq|, |pq| — |abl}.



