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PHY690G: Coherence and Quantum Entanglement Semester I, 2018-19; IIT Kanpur

Solutions: End-Semester Examination

Saturday, Nov 24th, 2018; Time: 9:00 am -12:00 pm; Maximum Marks: 100

Solution 1:

(a) We have

ṽ(ω) =
1

2π

∫ ∞
−∞

V (t)eiωtdω =
1

2π

∫ ∞
−∞

[
aei(ω−ωa)t + bei(ω−ωb)t

]
dω =

1

2π
[aδ(ω − ωa) + bδ(ω − ωb)]

Therefore, the cross-spectral density function is given by

W (ω1, ω2) = 〈ṽ∗(ω1)ṽ(ω2)〉 = ṽ∗(ω1)ṽ(ω2)

=
1

(2π)2

[
a2δ(ω1 − ωa)δ(ω2 − ωa) + b2δ(ω1 − ωb)δ(ω2 − ωb)

+ abδ(ω1 − ωa)δ(ω2 − ωb) + abδ(ω1 − ωb)δ(ω2 − ωa)
]

(b) The intensity is given by

I(t) = 〈V ∗(t)V (t)〉 = V ∗(t)V (t) = a2 + b2 + 2ab cos(ωa − ωb)t

(c) the temporal correlation function is given by

Γ(t1, t2) = 〈V ∗(t1)V (t2)〉 = V ∗(t1)V (t2)

= (aeiωat1 + beiωbt1)(ae−iωat2 + be−iωbt2)

= a2eiωa(t1−t2) + b2eiωb(t1−t2) + abei(ωat1−ωbt2) + abei(ωbt1−ωat2)

(d) The degree of temporal coherence is given by

γ(t1, t2) =
|Γ(t1, t2)|√

Γ(t1, t1)Γ(t2, t2)
=

|V ∗(t1)V (t2)|√
V ∗(t1)V (t1)V ∗(t2)V (t2)

= 1

Solution 2:

The conditions for the coherent-mode representation of a cross-spectral density function W (ρ1,ρ2) are:

(i) W (ρ1,ρ2) is square integrable, that is,
∫∫
D
|W (ρ1,ρ2)|2d2ρ1d2ρ2 <∞;

(ii) W (ρ1,ρ2) is Hermitian, that is, W ∗(ρ1,ρ2) = W (ρ2,ρ1); and

(iii) W (ρ1,ρ2) is non-negative definite function, that is,
∫∫
D
f∗(ρ1)f(ρ2)W (ρ1,ρ2)d2ρ1d

2ρ2 ≥ 0,
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Solution 3:

(a) We have

U(ρ; z) = eikz
∫∫ ∞
−∞

a(q)eiq.ρe−i
q2

2k zd2q.

Therefore we write,

〈U∗(ρ1; z)U(ρ2; z)〉 =

∫∫ ∞
−∞
〈a∗(q1)a(q2)〉e−iq1.ρ1+iq2.ρ2ei

q21−q
2
2

2k zd2q1d
2q2

We recognize 〈U∗(ρ1; z)U(ρ2; z)〉 = W (ρ1,ρ2, z) as the cross-spectral density function. The quantity A(q1, q2) ≡
〈a∗(q1)a(q2)〉 is called the angular correlation function. We therefore have the cross-spectral density function in
terms of the angular correlation function given as

W (ρ1,ρ2, z) =

∫∫ ∞
−∞
A(q1, q2)e−iq1.ρ1+iq2.ρ2ei

q21−q
2
2

2k zd2q1d
2q2.

(b) Since A(q1, q2) = δ(q1 − q2), we have

W (ρ1,ρ2, z) =

∫ ∞
−∞

I(q1)e−iq1·(ρ1−ρ2)dq1 =

∫ ∞
−∞

I(q)e−iq·(ρ1−ρ2)dq.

Because of the delta-function involved, the integral contributes only when q21 = q22 and therefore, the the cross-
spectral density function ends up being independent of the propagation distance z.

Solution 4:

Let us consider a unit-amplitude diverging spherical wave-field emanating from point r′1. The resulting field at
position r1 due to this diverging wave can be given by

eikR1

R1

where R1 = |r1−r′1|. In fact, this wave satisfies the Helmholtz equation and so can be used as a basis for representing
the propagation of fields. Now, if the amplitude of the field at r′1 is ṽ(r′1) then the resulting field at r1 is given by

ṽ(r′1)
eikR1

R1
.

Let us now consider an infinitesimal area element d2r′1 centered at r′1. The resulting field due to the area element
thus becomes

ṽ(r′1)
eikR1

R1
Λ1(k)d2r′1,

where Λ1(k) depends on the orientation of the area element. The total field ṽ(r1, ω) at r1 due to the source is
calculated by integrating over the entire source area, that is,

ṽ(r1) =

∫
A
ṽ(r′1)

eikR1

R1
Λ1(k)d2r′1.
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Similarly, the total field ṽ(r2) at some other position r2 due to the same source can be written as

ṽ(r2) =

∫
A
ṽ(r′2)

eikR2

R2
Λ2(k)d2r′2,

where, as before, R2 = |r2 − r′2|, and Λ2(k) is the inclination factor corresponding to the area element d2r′2. Using
the field representations above, we obtain the following expression for the field correlation 〈ṽ∗(r1)ṽ(r2)〉:

〈ṽ∗(r1)ṽ(r2)〉 =

∫
A

∫
A
〈ṽ∗(r′1)ṽ(r′2)〉e

ik(R2−R1)

R1R2
Λ∗1(k)Λ2(k)d2r′1d

2r′2.

The quantities in the angular brackets are the cross-spectral densities function. So, we can rewrite the above equation
as

W (r1, r2) =

∫
A

∫
A
W (r′1, r

′
2)
eik(R2−R1)

R1R2
Λ∗1(k)Λ2(k)d2r′1d

2r′2.

The above is the propagation equation for spatial coherence, which expresses the spatial correlations of the propagated
field in terms of the spatial correlations at the source. It can be rigourously shown that Λ1(k) = Λ2(k) = ik

2π but we
will just use this result and will not derive it here. Now we have W (r′1, r

′
2) = S(r′1, ω)δ(r′2− r′1). Therefore the cross

spectral density function at (r1, r2) can be written as

W (r1, r2) =

(
k

2π

)2 ∫
A

∫
A
S(r′1)δ(r′2 − r′1)

eik(R2−R1)

R1R2
d2r′1d

2r′2,

or, W (r1, r2) =

(
k

2π

)2 ∫
A
S(r′1)

eik(R2−R1)

R1R2
d2r′1,

In the far-zone, we can take R1 = r1 − |r′1| cosφ = r1 − r′1.s1. Similarly, we have R2 = r2 − r′1.s2 in the far
zone. Also, we can safely assume that the factor 1

R1R2
does not vary much in the far-zone for the integration-range

of interest and so we can take it out of the integral. The far-zone form of the above equation is then

W (r1, r2) =

(
k

2π

)2
1

R1R2

∫
A
S(r′1)eik(r2−r1)e−ik(s2−s1).r

′
1d2r′1,

or, W (r1, r2) =

(
k

2π

)2
eik(r2−r1)

R1R2

∫
A
S(r′1)e−ik(s2−s1).r

′
1d2r′1

Solution 5:
The state of the photon can be written in the H/V basis as

ρ =
1

2

(
1 0
0 0

)
+

1

2

(
1/2 1/2
1/2 1/2

)
=

1

2

(
3/2 1/2
1/2 1/2

)
=

(
3/4 1/4
1/4 1/4

)

We now need to write the state in the 45/ − 45 basis. The corresponding unitary operator is Û =

(
1 1
1 −1

)
.

Therefore the state in the 45/− 45 basis can be written as

ρ′ = Û−1ρÛ = Û†ρÛ

Here we have used the fact that for unitary operator Û−1 = Û†. The state of the photon in the 45/ − 45 basis can
therefore shown to be

ρ′ =

(
1 1
1 −1

)(
3/4 1/4
1/4 1/4

)(
1 1
1 −1

)
=

(
3/4 1/4
1/4 1/4

)
Thus, we find that the probability of detecting the photon as a 450-polarized photon is 3/4.
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Solution 6:

The state of the photon ρ can be written as

ρ =
1

3

(
1 0
0 0

)
+

1

3

(
0 0
0 1

)
+

1

3

(
1/2 1/2
1/2 1/2

)
=

1

3

(
3/2 1/2
1/2 3/2

)
=

(
1/2 1/6
1/6 1/2

)

The degree of polarization P is given by P =

[
1− 4

Detρ

(Trρ)2

]1/2
. For the above state Trρ = 1 and Detρ = 8/36.

Therefore we have

P =

[
1− 4

Detρ

(Trρ)2

]1/2
=

[
1− 4× 8

36

]1/2
=

[
4

36

]1/2
=

1

3

Solution 7:

From the definition of the degree of polarization, we know that a 2×2 polarization matrix can always be decomposed
uniquely into two matrices, one of which is completely polarized and the other completely unpolarized. So, if the
degree of polarization is P , then the polarization matrix J can be written as

J = PJpol + (1− P )

(
1/2 0
0 1/2

)
,

where Jpol is the completely polarized matrix with unit trace and

(
1/2 0
0 1/2

)
is the completely unpolarized matrix

with unit trace. For the given polarization matrix we have,

P =

[
1− 4

DetJ

(TrJ)2

]1/2
= [1− 4DetJ ]1/2 =

[
1− 4

(
5

8
· 3

8
−
√

3

8
·
√

3

8

)]1/2
=

[
1− 12

16

]1/2
=

1

2

Now from the above decomposition, we know that

PJpol = J − (1− P )

(
1/2 0
0 1/2

)
,

Or,
1

2
Jpol =

(
5
8

√
3
8√

3
8

3
8

)
−
(

2
8 0
0 2

8

)

=

(
3
8

√
3
8√

3
8

1
8

)

Therefore, we have

Jpol =

(
3
4

√
3
4√

3
4

1
4

)

And thus J can be written uniquely as

J =
1

2

(
3
4

√
3
4√

3
4

1
4

)
+

1

2

(
1/2 0
0 1/2

)
=

(
3
8

√
3
8√

3
8

1
8

)
+

(
1/4 0
0 1/4

)
,

where the first matrix is completely polarized and the second one is completely unpolarized.
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Solution 8:

(a) α = β∗

(b) We have α = |α|eiθ, where 0 ≤ θ ≤ 2π, and 0 ≤ |α| ≤
√

0.64× 0.36, that is, 0 ≤ |α| ≤ 0.48

Solution 9:

The only instances when Alice and Bob will keep the measurement result are when they both happen to use the same
base. And in these instances Alice and Bob will obtain the same measurement results since there is no eavesdropping
or channel errors. Therefore the generated key that Alice and Bob will share after the protocol is : 101011001.

Solution 10:

Since � d� lcoh and the coincidence time-window is much smaller compared to the time (x0 − d)/c, we find that
there can be only two possible ways in which the signal an idler photons can reach the detectors in coincidence. One
in which both the photons travel the shorter paths and the second in which both the photons travel the longer paths.
Since we are assuming no loss, perfect mirror and 50:50 beam splitters, the coincidence count rate of the signal and
idler detector is given by

Rsi = C

[
1 + γ(∆L)γ(∆L′) cos

(
2π

λ0
∆L+ ∆φ

)]
For the given interferometer, it can be shown that

∆L = xs + xi + 2x0 − 2d

∆L′ = 2(xs − xi)
∆φ = 0

Since the pump is monochromatic, we have γ(∆L) = 1, and therefore the coincidence count rate can be written as

Rsi = C

[
1 + γ(∆L′) cos

(
2π

λ0
∆L

)]
(a) In order to see a HOM-like dip profile, one has to make sure that one changes only ∆L′ while keeping ∆L fixed.

Given the expressions for ∆L and ∆L′ above, we find that this can be done if the signal and idler mirrors and
displaced by equal amounts in opposite directions, that is,

xs = a+ x

xi = −x

where a is some fixed starting distance and x is the variable distance. Now, the other condition that must be

satisfied for the observance of a dip is that cos
(

2π
λ0

∆L
)

= −1. This requires that

∆L = (2m+ 1)π × λ0
2π

= (2m+ 1)
λ0
2
, where m = 0, 1, 2, · · ·

Or, xs + xi + 2x0 − 2d = (2m+ 1)
λ0
2

Or, a+ x− x+ 2x0 − 2d = (2m+ 1)
λ0
2

Or, a = (2m+ 1)
λ0
2
− 2x0 + 2d

So, in order to observe a HOM-like dip profile, the signal mirror should first be displaced from the balanced
position by an amount a = (2m+ 1)λ0

2 − 2x0 + 2d, and then both the signal and idler mirrors should be displaced
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in opposite directions by equal amount x. Since ∆L′ = 2(xs − xi) = 4x + 4a, we would observe the dip as a
function of x, and it would be centered at x = −a2 .

(b) In order to see a HOM-like hump profile, one has to make sure that one changes only ∆L′ while keeping ∆L
fixed. Given the expressions for ∆L and ∆L′ above, we find that this can be done if the signal and idler mirrors
and displaced by equal amounts in opposite directions, that is,

xs = a+ x

xi = −x

where a is some fixed starting distance and x is the variable distance. Now, the other condition that must be

satisfied for the observance of a hump is that cos
(

2π
λ0

∆L
)

= 1. This requires that

∆L = 2mπ × λ0
2π

= mλ0, where m = 0, 1, 2, · · ·

Or, xs + xi + 2x0 − 2d = mλ0

Or, a+ x− x+ 2x0 − 2d = mλ0

Or, a = mλ0 − 2x0 + 2d

So, in order to observe a HOM-like hump profile, the signal mirror should first be displaced from the balanced
position by an amount a = mλ0 − 2x0 + 2d, and then both the signal and idler mirrors should be displaced in
opposite directions by equal amount x. Since ∆L′ = 2(xs − xi) = 4x + 4a, we would observe the hump as a
function of x, and it would be centered at x = −a2 .

(c) Since the two entangled photons in this setup never come together, there can be no bunching interpretation in
this interferomter of the HOM-like dip profiles.

Solution 11: We note that the combined state of the two entangled particles and particle-C can be written as a
pure tensor product of |Ψ−〉AB and |φ〉C and is given as

|Ψ〉ABC = |Ψ−〉AB|φ〉C

=
1√
2

(|H〉A|V 〉B − |V 〉A|H〉B) (α|H〉C + β|V 〉C)

=
α√
2
|H〉A|H〉C|V 〉B −

α√
2
|V 〉A|H〉C|H〉B +

β√
2
|H〉A|V 〉C|V 〉B −

β√
2
|V 〉A|V 〉C|H〉B. (1)

Alice has two particles, particle-A and particle-C. She performs a Bell state-measurement on these particle. This
simply means that she wants to see which Bell state her two particles are in. The Bell-basis representing particle-A
and particle-C are given as

|Φ±〉AC =
1√
2

[|H〉A|H〉C ± |V 〉A|V 〉C] ,

|Ψ±〉AC =
1√
2

[|H〉A|V 〉C ± |V 〉A|H〉C] .

The above relations yield

|H〉A|H〉C =
1√
2

(
|Φ+〉AC + |Φ−〉AC

)
,

|V 〉A|H〉C =
1√
2

(
|Ψ+〉AC − |Ψ−〉AC

)
,

|H〉A|V 〉C =
1√
2

(
|Ψ+〉AC + |Ψ−〉AC

)
,

|V 〉A|V 〉C =
1√
2

(
|Φ+〉AC − |Φ−〉AC

)
.
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Using the above relations Eq. (??) can be written as

|Ψ〉ABC =
α

2

(
|Φ+〉AC + |Φ−〉AC

)
|V 〉B −

α

2

(
|Ψ+〉AC − |Ψ−〉AC

)
|H〉B

+
β

2

(
|Ψ+〉AC + |Ψ−〉AC

)
|V 〉B −

β

2

(
|Φ+〉AC − |Φ−〉AC

)
|H〉B. (2)

The above equation can be rewritten as

|Ψ〉ABC =
1

2
|Φ+〉AC (α|V 〉B − β|H〉B) +

1

2
|Φ−〉AC (α|V 〉B + β|H〉B)

+
1

2
|Ψ+〉AC (−α|H〉B + β|V 〉B) +

1

2
|Ψ−〉AC (α|H〉B + β|V 〉B) (3)

We find that particle-A and particle-C are equally likely to be found in any of the four Bell states and the probability is
1/4. So, after Alice has done the Bell-state analysis she sends that information to Bob and based on that information
Bob deicides on a unitary transformation which guarantees that he has the original state. Here is how it is done:

(1) Alice’s measurement gives her the Bell state |Φ+〉AC. The state of Bob’s qubit will be (α|V 〉B − β|H〉B). So, Bob

makes the unitary transformation given by Ûφ+ =

(
0 1
−1 0

)
such that the state of Bob’s qubit becomes

Uφ+ (α|V 〉B − β|H〉B) =

(
0 1
−1 0

)(
−β
α

)
=

(
α
β

)
= (α|H〉B + β|V 〉B) (4)

(2) Alice’s measurement gives her the Bell state |Φ−〉AC. The state of Bob’s qubit will be (α|V 〉B + β|H〉B). So, Bob

makes the unitary transformation given by Ûφ− =

(
0 1
1 0

)
such that the state of Bob’s qubit becomes

Uφ− (α|V 〉B + β|H〉B) =

(
0 1
1 0

)(
β
α

)
=

(
α
β

)
= (α|H〉B + β|V 〉B) (5)

(3) Alice’s measurement gives her the Bell state |Ψ+〉AC. The state of Bob’s qubit will be (−α|H〉B + β|V 〉B). So,

Bob makes the unitary transformation given by Ûψ+ =

(
−1 0
0 1

)
such that the state of Bob’s qubit becomes

Uψ+ (−α|H〉B + β|V 〉B) =

(
−1 0
0 1

)(
−α
β

)
=

(
α
β

)
= (α|H〉B + β|V 〉B) (6)

(4) Alice’s measurement gives her the Bell state |Ψ−〉AC. The state of Bob’s qubit will be (α|H〉B + β|V 〉B). So, Bob

makes the unitary transformation given by Ûψ− =

(
1 0
0 1

)
such that the state of Bob’s qubit becomes

Uψ− (α|H〉B + β|V 〉B) =

(
1 0
0 1

)(
α
β

)
=

(
α
β

)
= (α|H〉B + β|V 〉B) (7)

Thus, we see that Bob gets the same state |ψ〉 that Alice intended to teleport.


