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PSO201A: Quantum Physics Homework # 1

Problem 1.1: Radiance and Energy density
The radiance R(ν) is defined as the energy radiated by a blackbody per unit area per unit time per unit frequency

interval (dν). R(ν) is proportional to the energy density ρ(ν) in a cavity. ρ(ν) is defined as the energy per unit
volume per unit frequency. Prove that R(ν) = (c/4)ρ(ν). (Hint: Show that the energy radiated out by an area dA
of the blackbody surface is same as the energy incident on this area element due to a hemispherical volume of radius
R = cdt, where c is the speed of light and dt is the time over which the area element dA radiates.)

Problem 1.2: Blackbody Radiation formula
As we derived in the class, the energy density ρ(ν)dν of standing waves inside a cavity with metallic walls is given

by

ρ(ν)dν =
8πν2

c3
Ēdν (1)

where Ē is the average energy of a standing wave.

(a) The classical theory assumes that a standing wave inside a cavity can have any value for the energy and therefore
the classical expression for average energy is given by

Ē =

∫∞
0
EP (E)dE∫∞

0
P (E)dE (2)

Using the Boltzmann probability distribution for P (E), that is, P (E) =
e−E/kT

kT
, show that

Ē = kT (3)

The above relation is also the statement of the law of equipartition of energy. Using the above relation show that

ρ(ν)dν =
8πν2kT

c3
dν. (4)

The above relation is called the Rayleigh-Jeans formula for blackbody radiation. This formula is correct only in
situations in which hν ¿ kT .

(b) However, according to Planck’s hypothesis (quantum theory) a standing wave inside a cavity can have only discrete
energy values given by E = nhν, where h is the Planck’s constant, ν is the frequency of the standing wave and
n = 0, 1, 2... is an integer. The expression for average energy therefore now becomes

Ē =
∑∞

n=0 EP (E)∑∞
n=0 P (E)

(5)

Prove that, with Planck’s hypothesis, the average energy of the standing wave is Ē =
hν

ehν/kT − 1
and thus that

the energy density is given by

ρ(ν)dν =
8πν2

c3

hν

ehν/kT − 1
dν (6)

The above expression is known as Planck’s formula for blackbody radiation and it turns out to be correct for
blackbody radiation at all frequencies.

(c) Show that for small frequencies, that is, hν ¿ kT , the Planck’s radiation formula reduces to the Rayleigh-Jeans
formula.
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Problem 1.3: Stefan’s law
Stefan’s law seeks to find a relation between the temperature T of the blackbody and the total radiance RT , which

is the total energy radiated out by the blackbody per unit area per unit time. RT is defined as: RT =
∫∞
0

R(ν)dν.
In the class we had derived the Planck’s law for blackbody spectrum, which quantifies the energy density ρ(ν)dν per

unit frequency in the blackbody radiation and is given by: ρ(ν)dν =
8πν2

c3

hν

ehν/kT − 1
dν.

(a) Using the relation R(ν) =
c

4
ρ(ν), show that the total radiance depends on temperature T as RT = σT 4. This is

called Stefan’s law and the constant σ is called the Stefan-Boltzmann constant.

(b) Find the numerical value of the Stefan’s constant.

Problem 1.4: Wien’s Displacement law

(a) Starting from Planck’s radiation formula, derive Wien’s displacement law: λmaxT = 2.898× 10−3 m-K by solving
dρ(λ)/dλ = 0. Here λmax is the wavelength at which the radiance from the blackbody reaches its maximum and
T is the temperature of the blackbody. (Hint: Set hc/λkT = x and show that the equation dρ(λ)/dλ = 0 leads
to e−x + x/5− 1 = 0. Then show that x = 4.965 is the solution.

(b) Suppose an object is heated to about 3000 K. Of what color would this source appear— Reddish, Greenish,
Bluish? (Hint: Use Wien’s displacement law).

Problem 1.5: Photoelectric effect

(a) The minimum electromagnetic energy that a human eye can detect is 1× 10−18 J. How many photons of 600 nm
wavelength does that correspond to?

(b) Show that it is impossible for a photon to give up all its energy and momentum to a free electron. This is the
reason why the photoelectric effect can take place only when the photons strike bound electrons.

(c) Now, explain qualitatively how the energy and momentum conservations are simultaneously satisfied when pho-
toelectric effect takes place with bound electrons.

(d) The work function of sodium, or the energy required to remove an electron from sodium is 2.3 eV. We have two
sources of light. First is an intense, one watt HeNe laser at 633 nm and the second is the torch-light in a mobile
phone. Which one of the two sources has a finite probability of ejecting an electron from Sodium and why?
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