Department of Physics

IIT Kanpur, Semester II, 2016-17

Problem 4.1: Taking the adjoint

Write down the adjoint of the following equations/expressions
(a) $\hat{\Omega}\left|V_{1}\right\rangle+\sum_{i=0}^{n} v_{i}|i\rangle$
(b) $\left|\psi_{1}\right\rangle=a\left|\psi_{2}\right\rangle+b\left\langle\psi_{3} \mid \psi_{4}\right\rangle\left|\psi_{5}\right\rangle+d\left\langle\psi_{6}\right| \hat{\Omega}\left|\psi_{7}\right\rangle\left|\psi_{8}\right\rangle$

Problem 4.2: Representation in position basis

Write down the following vector-equations/-expressions in the position basis.
(a) $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$
(b) $\left\langle x \mid x^{\prime}\right\rangle$
(c) $\left\langle\psi_{1}\right| \hat{\Omega}\left|\psi_{2}\right\rangle$
(d) $\hat{\Omega}\left|\psi_{1}\right\rangle=\omega\left|\psi_{1}\right\rangle$
(e) $\left\langle\psi_{1}\right| \hat{\Omega}\left|\psi_{2}\right\rangle=\left\langle\psi_{2}\right| \hat{\Omega}^{\dagger}\left|\psi_{1}\right\rangle^{*}$

Problem 4.3: Miscellaneous Concepts

(a) Do the following three vectors form a basis:

$$
|1\rangle=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) ; \quad|2\rangle=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) ; \quad|3\rangle=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) ?
$$

(b) Show that the unitary transformations preserve the inner product. That is, show that if $\hat{\mathrm{U}}$ is a unitary operator and $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are two vectors then $\left\langle\psi_{1}^{\prime} \mid \psi_{2}^{\prime}\right\rangle=\left\langle\psi_{1} \mid \psi_{2}\right\rangle$, where $\left|\psi_{1}^{\prime}\right\rangle=\hat{\mathrm{U}}\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}^{\prime}\right\rangle=\hat{\mathrm{U}}\left|\psi_{2}\right\rangle$.
(c) The matrix representations for $\hat{\mathrm{X}}$ and $\hat{\mathrm{P}}$ in the position basis are given by: $\langle x| \hat{\mathrm{X}}\left|x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right) x^{\prime}$ and $\langle x| \hat{\mathrm{P}}\left|x^{\prime}\right\rangle=$ $\delta\left(x-x^{\prime}\right)\left(-i \hbar \frac{d}{d x^{\prime}}\right)$. Show that the matrix representation for an operator $f(\hat{\mathrm{X}}, \hat{\mathrm{P}})$ that is a function of $\hat{\mathrm{X}}$ and $\hat{\mathrm{P}}$, can be written as

$$
\langle x| f(\hat{\mathrm{X}}, \hat{\mathrm{P}})\left|x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right) f\left(x^{\prime},-i \hbar \frac{d}{d x^{\prime}}\right)
$$

(d) Show that the momentum operator $\hat{\mathrm{P}}$, with the position-basis representation given by $\langle x| \hat{\mathrm{P}}\left|x^{\prime}\right\rangle=\delta(x-$ $\left.x^{\prime}\right)\left(-i \hbar \frac{d}{d x^{\prime}}\right)$, is a Hermitian operator.
(e) If \hat{H} is a Hermitian matrix, then show that $e^{i \hat{H}}$ is a unitary matrix.
(f) Show that the eigenvectors of a Hermitian operator are mutually orthogonal (assume that there is no degeneracy).
(g) If $\hat{\mathrm{A}}$ and $\hat{\mathrm{B}}$ are two Hermitian operators then under what condition is the product $\hat{\mathrm{A}} \hat{\mathrm{B}}$ also a Hermitian operator?
(h) Show that the commutator of position and momentum operators $[\hat{\mathrm{X}}, \hat{\mathrm{P}}]=i \hbar \hat{I}$, where \hat{I} is the identity matrix. (Hint: show that $[\hat{\mathrm{X}}, \hat{\mathrm{P}}]|\psi\rangle=i \hbar \hat{I}|\psi\rangle$, where $|\psi\rangle$ is any vector in the Hilbert space.)

Problem 4.4: Diagonalizing a Matrix

(a) For the Unitary matrix \hat{A} below, show that the eigenvalues are complex number of unit modulus and that the eigenvectors are orthogonal.

$$
\hat{A}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

(b) Verify that $\hat{U}^{\dagger} \hat{A} \hat{U}$ is a diagonal matrix, where \hat{U} is the matrix of the eigenvectors of \hat{A}.

Problem 4.5: Completeness of a basis

(a) Show that the following three vectors:

$$
|1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) ; \quad|2\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) ; \quad|3\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

form a complete basis.
(b) Let $|p\rangle$ be the eigenvector of the momentum operator. The completeness condition for the momentum eigenvectors is given by $\int_{-\infty}^{\infty}|p\rangle\langle p| d p=\mathrm{I}$, where I is the identity matrix. Show that the completeness condition for the momentum eigenvectors can be written in the position basis as

$$
\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{i p\left(x-x^{\prime}\right) / \hbar} d p=\delta\left(x-x^{\prime}\right)
$$

(c) Let $\psi_{n}(x)$ is the position-space eigenfunction of the simple harmonic oscillator Hamiltonian. Evaluate the following sum:

$$
\begin{array}{cl}
& \sum_{n=0}^{\infty} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right) \\
\text { where } & \psi_{n}(x)=A_{n} \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right) H_{n}\left[\left(\frac{m \omega}{\hbar}\right)^{1 / 2} x\right]
\end{array}
$$

(Hint: Use the fact that the eigenvectors of a Hermitian operator form a complete basis.)

