# Department of Physics <br> IIT Kanpur, Semester II, 2016-17 

## PSO201A: Quantum Physics

## Homework \# 7

## Problem 7.1: Two-dimensional infinite well

(a) Find the stationary state solutions and the corresponding energy values that a particle of mass $m$ can have in a two-dimensional infinite square potential-well of side $a$ each, given by

$$
\begin{aligned}
V(x, y) & =0 \quad \text { if } \quad 0<x<a \quad \text { and } \quad 0<y<a \\
& =\infty \quad \text { otherwise }
\end{aligned}
$$

(b) What is the energy of the ground state of such a system?
(c) What is the next higher energy value that the system can take and what are the position-space wavefunctions of the states corresponding to this energy?

## Problem 7.2: Propagator Basics - I

The stationary state solutions for the simple harmonic oscillator potential at time $t=0$ is denoted by $\left|\psi_{n}\right\rangle$, with the energy of the $n^{\text {th }}$ state given by $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.
(a) Using the propagator algebra find out the state $|\psi(t)\rangle$ of the particle at time $t$ if the state of the particle at $t=0$ is given by

$$
|\psi\rangle=\left|\psi_{m}\right\rangle
$$

(b) Using the propagator algebra find out the position-space wave-function $\psi(x, t)$ of the particle at time $t$, if the state of the particle at time $t_{0}$ is given by

$$
\left|\psi\left(t_{0}\right)\right\rangle=\frac{1}{\sqrt{2}}\left[\left|\psi_{2}\left(t_{0}\right)\right\rangle+\left|\psi_{3}\left(t_{0}\right)\right\rangle\right]
$$

(c) Show by explicit calculation that the propagator for the simple harmonic oscillator is a unitary opertor. That is, show that $\hat{U}\left(t, t_{0}\right) \hat{U}^{\dagger}\left(t, t_{0}\right)=I$, where $I$ is the identity matrix.

## Problem 7.3: Propagator Basics -II

Suppose that $\left|\psi_{n}\right\rangle$ are the stationary state solutions at $t=0$ to the Schrödinger equation for some time-independent potential and $E_{n}$ are the corresponding energies. Also, suppose that the propagation equation for a state of such a system can be written as $|\psi(t)\rangle=\hat{U}(t, 0)|\psi(0)\rangle$, where $|\psi(0)\rangle$ and $|\psi(t)\rangle$ are the states of the system at $t=0$ and at time $t$, respectively, and $\hat{U}(t, 0)$ is the propagator.
(a) Assuming that $\left|\psi_{n}\right\rangle$ form a complete basis, derive an expression for the propagator $\hat{U}(t, 0)$ in terms of $\left|\psi_{n}\right\rangle$.
(b) Write the propagator $\hat{U}(t, 0)$ in the position basis.
(c) Write the propagator equation $|\psi(t)\rangle=\hat{U}(t, 0)|\psi(0)\rangle$ in the position basis.

## Problem 7.4: Two-level system

Let $\hat{H}=\left(\begin{array}{cc}\hbar \omega & 0 \\ 0 & 2 \hbar \omega\end{array}\right)$ be the Hamiltonian and $\hat{A}=\left(\begin{array}{cc}0 & \mu \\ \mu & 0\end{array}\right)$ be an observable of a two-level system. Let $|\psi(0)\rangle=$ $\frac{1}{\sqrt{2}}\binom{1}{1}$ be the state of this system at $t=0$.
(a) Calculate the normalized eigenvectors and the eigenvalues of the Hamiltonian.
(b) Calculate the expectation value of energy and of the observable $\hat{A}$ at $t=0$.
(c) Find the $2 \times 2$ matrix representation for the propagator $\hat{U}(t, 0)$.
(d) Calculate the expectation value of energy and of the observable $\hat{A}$ at time $t$.

## Problem 7.5: Young's double-slit type effect in time

Suppose that the position-space wavefunction of a particle at $t=0$ is

$$
\begin{aligned}
\psi(x, 0) & =A ; \quad \text { if } \quad-\left(\frac{R+d}{2}\right)<x<-\left(\frac{R-d}{2}\right) \quad \text { and } \quad\left(\frac{R-d}{2}\right)<x<\left(\frac{R+d}{2}\right) \\
& =0 ; \quad \text { otherwise }
\end{aligned}
$$

(Take $R \gg 2 d$ )
(a) Find the normalization constant $A$ and the mean velocity with which the wave-function is moving at $t=0$.
(b) Plot the position probability density $P(x, 0) \equiv \psi^{*}(x, 0) \psi(x, 0)$ at $t=0$.
(c) Find the momentum probability density $P(p, 0) \equiv \psi^{*}(p, 0) \psi(p, 0)$ at $t=0$.
(d) Using the free-particle propagator $U\left(x, t ; x^{\prime}, 0\right)=\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} \exp \left[-\frac{i m\left(x-x^{\prime}\right)^{2}}{2 \hbar t}\right]$, show that the propagator equation in the long-time limit, that is, $t \gg \frac{m R^{2}}{2 \hbar}$, can be written as

$$
\psi(x, t)=\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} \exp \left[-\frac{i m x^{2}}{2 \hbar t}\right] \int_{-\infty}^{\infty} \exp \left[\frac{i m x}{\hbar t} x^{\prime}\right] \psi\left(x^{\prime}, 0\right) d x^{\prime}
$$

(e) Calculate the long-time limit position probability density $P(x, t)$.
(f) Comment on the connection between the momentum probability density $P(p, 0)$ at $t=0$ and the long-time limit position probability density $P(x, t)$.
(g) Plot the long-time limit position probability density $P(x, t)$ as a function of $x$, indicating all the essential features.

