Department of Physics
 IIT Kanpur, Semester II, 2016-17

PSO201A: Quantum Physics Homework \# 8

Problem 8.1: Gaussian Wave-packet

The eigen-solutions to the free particle hamiltonian are the plane waves. One of the superpositions of the plane waves is a Gaussian wave-packet. The position-basis wave-function for a Gaussian wave-packet at $t=0$ is given as

$$
\psi(x, 0)=e^{i p_{0} x / \hbar}\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{1 / 2} \exp \left[-\frac{x^{2}}{4 \sigma^{2}}\right]
$$

(a) What is the mean velocity with which this wave-packet is moving at $t=0$?
(b) Find out the probability density $P(x, t)$ at time t.
(c) What is the mean velocity with which this wave-packet is moving at time t ?
(d) The width of a wave-packet is defined as the position uncertainty Δx associated with the wave-function. The width of the wave-packet at $t=0$ is $\Delta x(0)=\sigma$. Find the width $\Delta x(t)$ of the wave-packet at time t.
(e) why does the width of the wave-packet increase with time while its speed remain the same?

Problem 8.2: The finite square-well potential

In the class, we worked out the bound states for the even solutions of the finite square-well potential:

$$
\begin{aligned}
V(x) & =-V_{0} & & \text { for } \quad-a<x<a \\
& =0 & & \text { for } \quad|x|>a
\end{aligned}
$$

This problem is regarding the odd solutions:
(a) Work out the transcendental equation for the allowed energies of the odd bound states.
(b) Solve the transcendental equation graphically to calculate the bound state energies in the limit $V_{0} \rightarrow \infty$.
(c) Will there always be a bound state even if V_{0} is made very small.

Problem 8.3: The "transparent" finite square-well potential

Consider again the potential of Problem 8.2. Suppose a particle of mass m and energy E approaches this potential form left. Calculate the energy value(s) for which the potential becomes transparent for the particle (RamsauerTownsend effect).

Problem 8.4: Finite-Infinite square-well potential

Suppose a particle of mass m is in the potential:

$$
\begin{aligned}
V(x) & =\infty & & \text { for } x<0 \\
& =-\frac{32 \hbar^{2}}{m a^{2}} & & \text { for } 0 \leq x \leq a \\
& =0 & & \text { for }|x|>a
\end{aligned}
$$

Find out all the possible bound states.

Problem 8.5: The double delta-function potential

Consider a particle of mass m in a double Dirac delta-function potential.

$$
V(x)=-\alpha[\delta(x+a)+\delta(x-a)]
$$

where α and a are positive constants.
Find out the bound states that the particle can have.

