Name: \qquad Roll No.: \qquad Section.

Problem 1: Consider a cavity with metallic walls in thermal equilibrium as a blackbody. Find the relationship between the radiance of the blackbody and the energy density in the cavity. ($\mathbf{2 5}$ marks)

Answer: In thermal equilibrium the total energy radiated out by an area element $d A$ of a blackbody equals the energy incident on the element from the cavity (as illustrated in the figure below).

The energy E radiated out by an area element $d A$ in time $d t$ is

$$
\begin{equation*}
E=R(\nu) d \nu d A d t \tag{1}
\end{equation*}
$$

This area element will receive energy from the hemispherical volume of radius $c d t$ that is surrounding the area element. The radiation coming in from outside this region will not be able to reach the area element within $d t$. As shown in the figure, let's consider a volume element $d V=r^{2} \sin \theta d r d \theta d \phi$ within the hemishpere. The total energy within this volume element is $\rho(\nu) d \nu d V=\rho(\nu) d \nu r^{2} \sin \theta d r d \theta d \phi$. The energy $d E$ falling from this volume element onto the area element $d A$ which is at distance r and angle θ is $d E=\rho(\nu) d \nu r^{2} \sin \theta d r d \theta d \phi \times \frac{d A}{4 \pi r^{2}} \cos \theta$. Therefore the total energy falling onto the area element $d A$ is

$$
\begin{equation*}
E=\rho(\nu) d \nu \frac{d A}{4 \pi} \int_{0}^{c d t} d r \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta \int_{0}^{2 \pi} d \phi=E=\rho(\nu) d \nu d A d t \frac{c}{4} \tag{2}
\end{equation*}
$$

Comparing the above two equations, we get the required relationship: $R(\nu)=\frac{c}{4} \rho(\nu)$.

Problem 2: Using Planck's hypothesis and Boltzmann's probability distribution, calculate the average energy of a standing wave at frequency ν inside a cavity at temperature T. [useful formula: $\left.\sum_{n=0}^{\infty} x^{n}=1 /(1-x)\right]$. ($\mathbf{2 5}$ marks)

Answer: Planck's hypothesis is that the standing wave inside a cavity can have energy only in the multiples of $h \nu$. With this form for the energy, and using the Boltzmann probability distribution, we get the following formula for the average energy of a standing wave at frequency ν inside a cavity at temperature T.

$$
\begin{equation*}
\overline{\mathcal{E}}=\frac{\sum_{n=0}^{\infty} \mathcal{E} P(\mathcal{E})}{\sum_{n=0}^{\infty} P(\mathcal{E})}=\frac{\sum_{n=0}^{\infty} n h \nu e^{-n h \nu / k T}}{\sum_{n=0}^{\infty} e^{-n h \nu / k T}} \tag{3}
\end{equation*}
$$

Substituting $x=e^{-h \nu / k T}$, we can write this as

$$
\begin{equation*}
\overline{\mathcal{E}}=h \nu \frac{\sum_{n=0}^{\infty} n x^{n}}{\sum_{n=0}^{\infty} x^{n}} \tag{4}
\end{equation*}
$$

Now, we use the following formula from geometric series

$$
\begin{equation*}
\sum_{n=0}^{\infty} x^{n} \rightarrow 1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \tag{5}
\end{equation*}
$$

First differentiating both sides with respect to x and then multiplying both sides with x, we get

$$
\begin{aligned}
& 1+2 x+3 x^{2}+4 x^{3}+\cdots=\frac{1}{(1-x)^{2}} \\
& x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots=\frac{x}{(1-x)^{2}} \\
& \text { therefore } \quad \sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
\end{aligned}
$$

Substituting these formulas in the expression for average energy above, we get

$$
\begin{equation*}
\overline{\mathcal{E}}=h \nu \frac{\sum_{n=0}^{\infty} n x^{n}}{\sum_{n=0}^{\infty} x^{n}}=h \nu \frac{x /(1-x)^{2}}{1 /(1-x)}=h \nu \frac{x}{1-x}=h \nu \frac{1}{(1 / x)-1}=\frac{h \nu}{e^{h \nu / k T}-1} \tag{6}
\end{equation*}
$$

Problem 3: For a photon of wavelength λ_{0}, scattering off of an electron of rest mass m_{0}, find the relationship between the photon scattering angle θ and the electron scattering angle ϕ. (25 marks)

Answer:

The conservation of momentum requires that

$$
\begin{align*}
P_{0}= & P_{1} \cos \theta+P \cos \phi \tag{7}\\
& P \sin \theta=P \sin \phi \tag{8}
\end{align*}
$$

From equation (7) and (8) we get

$$
\begin{array}{r}
\frac{P_{0}-P_{1} \cos \theta}{\cos \phi}=\frac{P_{1} \sin \theta}{\sin \phi} \\
\frac{h}{\lambda_{0}}-\frac{h}{\lambda_{1}} \cos \theta=\frac{h}{\lambda_{1}} \frac{\sin \theta}{\tan \phi} \\
\frac{1}{\lambda_{0}}=\frac{1}{\lambda_{1}}\left(\cos \theta+\frac{\sin \theta}{\tan \phi}\right) \\
\frac{\lambda_{1}}{\lambda_{0}}=\cos \theta+\frac{\sin \theta}{\tan \phi} \tag{12}
\end{array}
$$

From the homework 2.1 (a) we already have that

$$
\begin{gather*}
\lambda_{1}-\lambda_{0}=\frac{h}{m_{0} c}(1-\cos \theta) \tag{13}\\
\frac{\lambda_{1}}{\lambda_{0}}=1+\frac{h}{m_{0} c \lambda_{0}}(1-\cos \theta) \tag{14}
\end{gather*}
$$

From equation (12) and (14) we can write

$$
\begin{array}{r}
\cos \theta+\frac{\sin \theta}{\tan \phi}=1+\frac{h}{\lambda_{0} m_{0} c}(1-\cos \theta) \\
\frac{\sin \theta}{\tan \phi}=(1-\cos \theta)\left[1+\frac{h}{\lambda_{0} m_{0} c}\right] \\
\frac{\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)}{\tan \phi}=2 \sin ^{2}\left(\frac{\theta}{2}\right)\left[1+\frac{h}{\lambda_{0} m_{0} c}\right] \\
\cot \left(\frac{\theta}{2}\right)=\tan \phi\left[1+\frac{h}{\lambda_{0} m_{0} c}\right] \tag{18}
\end{array}
$$

Problem 4: For an electron microscope to have a resolution of $0.1 \AA$, what is the minimum kinetic energy that the electron needs to have? ($m_{0} c^{2}=0.511 \mathrm{MeV}$ for an electron.) (20 marks)

Answer:

Here we have $\lambda=0.1 \AA$. For an electron, the total relativistic energy

$$
\begin{array}{r}
E=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}} \text { Joule } \\
m_{0} c^{2}=0.511 \times 10^{6} \mathrm{eV}
\end{array}
$$

Therefore,

$$
E=\sqrt{\frac{h c}{\lambda}\left(\frac{1}{1.602 \times 10^{-19}}\right)^{2}+\left(0.511 \times 10^{6}\right)^{2}}=0.5258 \times 10^{6} \mathrm{eV}
$$

So, the required energy is

$$
K=E-m_{0} c^{2}=(0.5258-0.511) \times 10^{6}=14.8 \mathrm{KeV}
$$

