Name: \qquad Roll No.: \qquad Section.

Problem 1: The position-space wave function for a particle in the lowest-energy stationary state of a harmonic potential is given by $\psi_{0}(x)=\left(\frac{1}{2 \pi \sigma_{x}^{2}}\right)^{1 / 4} \exp \left(-\frac{x^{2}}{4 \sigma_{x}^{2}}\right)$, where $\sigma_{x}=\sqrt{\hbar /(2 m \omega)}$.
(a) Find the momentum-space wave function for the particle. (Hint: you could make use of the standard integral: $\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=\exp \left(\frac{\beta^{2}}{4 \alpha}\right)\left(\frac{\pi}{\alpha}\right)^{1 / 2}$.) (15 marks)
(b) Taking the standard deviation of a probability-density curve to be the uncertainty, calculate the position and momentum uncertainly product for the above wave-function. ($\mathbf{1 5}$ marks)

Problem 2: Let $\hat{H}=\left(\begin{array}{cc}\hbar \omega & 0 \\ 0 & 2 \hbar \omega\end{array}\right)$ be the Hamiltonian and $\hat{A}=\left(\begin{array}{cc}0 & \mu \\ \mu & 0\end{array}\right)$ be an observable of a two-level system. Let $|\psi(0)\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$ be the state of this system at $t=0$.
(a) Calculate the normalized eigenvectors and the eigenvalues of the Hamiltonian. (10 marks)
(b) Calculate the expectation value of energy and of the observable \hat{A} at $t=0$. ($\mathbf{1 0}$ marks)
(c) Find the 2×2 matrix representation for the propagator $\hat{U}(t, 0)$. (10 marks)
(d) Calculate the expectation value of energy and of the observable \hat{A} at time t. (10 marks)

Problem 3: For the potential :

$$
\begin{aligned}
V(x) & =-V_{0} & & \text { for } \\
& =0 & & \text { for } \quad|x|>a<x<a
\end{aligned}
$$

(a) Work out the transcendental equation for the allowed energies of the odd bound states. (20 marks)
(b) What is the minimum number of bound states that this potential can allow? (10 marks)

