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PSO201A: Quantum Physics Solution # 1

Solution 1.1: Radiance and Energy density
In thermal equilibrium the total energy radiated out by an area element dA of a blackbody equals the energy

incident on the element from the cavity (as illustrated in the figure below).
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The energy E radiated out by an area element dA in time dt is

E = R(ν)dνdAdt (1)

This area element will receive energy from the hemispherical volume of radius cdt that is surrounding the area element.
The radiation coming in from outside this region will not be able to reach the area element within dt. As shown in
the figure, let’s consider a volume element dV = r2 sin θdrdθdφ within the hemishpere. The total energy within this
volume element is ρ(ν)dνdV = ρ(ν)dνr2 sin θdrdθdφ. The energy dE falling from this volume element onto the area

element dA which is at distance r and angle θ is dE = ρ(ν)dνr2 sin θdrdθdφ× dA

4πr2
cos θ. Therefore the total energy

falling onto the area element dA is

E = ρ(ν)dν
dA

4π

∫ cdt

0

dr

∫ π/2

0

sin θ cos θdθ

∫ 2π

0

dφ = E = ρ(ν)dνdAdt
c

4
(2)

Comparing the above two equations, we get the desired result, that is, R(ν) =
c

4
ρ(ν).

Solution 1.2: Blackbody Radiation formula

(a) The classical expression for average energy is given by

Ē =

∫∞
0
EP (E)dE∫∞

0
P (E)dE (3)

Using the Boltzmann distribution P (E) =
1

kT
e−E/kT and substituting x =

E
kT

, we can write the above expression
as

Ē = kT

∫∞
0

xe−xdx∫∞
0

e−xdx
= kT

[e−x(1 + x)]∞0
[e−x]∞0

= kT
0− 1
0− 1

= kT (4)
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We find that the average energy Ē = kT depends only on the temperature and does not depend on the frequency
of the standing wave. This is also the statement of the law of equipartition of energy in classical theory. The
energy ρ(ν)dν of standing waves inside a cavity can now be written as

ρ(ν)dν =
8πν2kT

c3
dν. (5)

(b) Planck’s hypothesis is that the standing wave inside a cavity can have energy only in the multiples of hν. With
this form for the energy, the average energy of the standing waves becomes

Ē =
∑∞

n=0 EP (E)∑∞
n=0 P (E)

=
∑∞

n=0 nhνe−nhν/kT

∑∞
n=0 e−nhν/kT

(6)

Substituting x = e−hν/kT , we can write this as

Ē = hν

∑∞
n=0 nxn

∑∞
n=0 xn

(7)

Now, we use the following formula from geometric series

∞∑
n=0

xn → 1 + x + x2 + x3 + · · · = 1
1− x

(8)

First differentiating both sides with respect to x and then multiplying both sides with x, we get

1 + 2x + 3x2 + 4x3 + · · · = 1
(1− x)2

x + 2x2 + 3x3 + 4x4 + · · · = x

(1− x)2

therefore
∞∑

n=0

nxn =
x

(1− x)2

Substituting these formulas in the expression for average energy above, we get

Ē = hν

∑∞
n=0 nxn

∑∞
n=0 xn

= hν
x/(1− x)2

1/(1− x)
= hν

x

1− x
= hν

1
(1/x)− 1

=
hν

ehν/kT − 1
(9)

The energy ρ(ν)dν of standing waves inside the cavity can now be written as

ρ(ν)dν =
8πν2

c3

hν

ehν/kT − 1
dν (10)

Solution 1.3: Stefan’s law

(a) Using the relation derived in Homework 1.1 and the Planck’s radiation formula, we get

R(ν)dν =
c

4
ρ(ν)dν =

2πhν3

c2(ehν/kT − 1)
dν. (11)

So, the total radiance RT is given by

RT =
∫ ∞

0

R(ν)dν =
2πh

c2

∫ ∞

0

ν3

ehν/kT − 1
dν (12)
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Using x =
hν

kT
and dx =

hdν

kT
, we get

RT =
2πh

c2

(
kT

h

)4 ∫ ∞

0

x3dx

ex − 1
(13)

Using the standard integral
∫∞
0

x3dx

ex − 1
=

π4

15
, we obtain

RT =
2π5k4

15c2h3
T 4 = σT 4 (14)

(b) Using k = 1.38× 10−23 J/K, c = 3× 108 m/s, h = 6.626× 10−34 J-s, we get σ = 5.64× 10−8 W/m2-K4.

Solution 1.4: Wien’s Displacement law

(a) First of all we need to express Planck’s formula in terms of wavelength. We start from the equality ρ(λ)dλ =
−ρ(ν)dν. The minus sign indicates that dν and dλ have opposite signs (when one increases the other one decreases).
Next, using ν = c/λ, we get dν = − c

λ2
dλ. We can therefore write,

ρ(λ)dλ = −ρ(ν)dν = −8πh(c/λ)3

c3

1
ehc/λkT − 1

(−c

λ2

)
dλ =

8πhc

λ5

1
ehc/λkT − 1

dλ

We are interested in finding the wavelength at which ρ(λ) is maximum. Thus we need to solve the equation
dρ(λ)/dλ = 0, doing which we get

8πch

[−5
λ6

1
ehc/λkT − 1

+
1
λ5

−ehc/λkT

(ehc/λkT − 1)2
−hc

λ2kT

]
= 0 (15)

Substituting x =
hc

λkT
, we can write the above equation as

e−x +
x

5
− 1 = 0 (16)
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This equation can be graphically solved to give x = 4.965 as the solution (see the figure). Using this solution we

get
hc

λmaxkT
= 4.965. Therefore, we get

λmaxT =
hc

4.965× k
=

6.626× 10−343× 10−8

4.965× 1.381× 10−23
= 2.898× 10−3m−K. (17)

This is Wien’s displacement law.
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(b) For an object that is at T =3000 K, the λmax is

λmax = 2.898× 10−3/3000 = 0.966× 10−6m = 966nm (18)

Since the λmax is at 966 nm, the object would appear reddish.

Solution 1.5: Photoelectric effect

(a) Suppose the eye can detect a minimum of N photons. Then N
hc

λ
= 1× 10−18 J. Therefore,

N =
λ

hc
1× 10−18 =

1× 10−18 × 600× 10−9

6.626× 10−34 × 3× 108
≈ 3 photons (19)

It is clear that the eyes are excellent detectors. They have the detection sensitivity of up to a few photons.

(b) If a photon is absorbed by an electron, momentum conservation requires that the electron now moves along the
initial photon direction and so the momentum conservation requires

pph =
h

λ
= pe (20)

where pph and pe are the momenta of the photon and the electron, respectively.

The energy conservation requires that

hc

λ
+ mec

2 =
√

p2
ec

2 + m2
ec

4 (21)

In order for both these conversation equations to be satisfied, we have to have (substituting for pe in the above
equation)

(
hc

λ
+ mec

2

)2

=
h2c2

λ2
+ m2

ec
4

or,
2hc

λ
mec

2 = 0 (22)

This is an impossible condition to satisfy since the rest mass of an electron is non-zero. Thus we conclude that it
is impossible for a photon to give up all its energy and momentum to a free electron.

(c) In case of photoelectric effect with bound electrons, the atoms, which are much heavier than electrons also come
into picture and play the most significant role. Since atoms are heavier they can absorb a large amount of extra
momentum without taking away too much of the energy. This way a photon can be absorbed and an electron
emitted while satisfying both the momentum and energy conservations.

(d) Since the work function of Sodium is 2.3 eV. The cut-off wavelength is

λ0 =
hc

2.3eV
=

6.626× 10−34 × 3× 108

2.3× 1.6× 10−19
≈ 541 nm (23)

So, in order to eject an electron from Sodium, the wavelength of the incoming light must be smaller than 541 nm.
A one Watt, HeNe laser at 633 nm is very intense and has a lot of photons but it does not have photons that
are energetic enough to eject out an electron from Sodium. Therefore, there is no probability of electron ejection
from sodium. On the other hand, although the torch-light of a cell-phone is a much less intense source than a
laser, it does have photons at wavelengths lower than 541 nm. And therefore, there is a finite probability that it
will be able to eject electron from sodium.
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