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PSO201A: Quantum Physics Solution # 2

Solution 2.1: Radiation manifesting as particles

(a) Follow the derivation given in Section 2.4 of Eisberg and Resnick.

(b) Follow the derivation given in Example 2.4 (b) of Eisberg and Resnick.

(c) The Compton shift ∆λ at θ = π/2 is independent of the wavelength of the incident wave and is given by
∆λ = λc = 0.0243 Å.

(d) For the observation of the Compton effect experimentally, the relevant quantity that we need to consider is
∆λ

λ0

for γ rays : λ0 = 1.88× 10−2Å; and
∆λ

λ0
= 1.29

for X− rays : λ0 = 1.0Å; and
∆λ

λ0
= 2.43× 10−2

for visible photons : λ0 = 5000Å; and
∆λ

λ0
= 4.86× 10−6

We notice that it will be much easier to see the effect with γ-rays since the two wavelengths λ0 and λ1 are well
separated. With X-rays, it will be relatively more difficult since the two wavelengths λ0 and λ1 are close to within
two percent of the wavelength. With visible light, it will be impossible to see the Compton effects since the two
wavelengths λ0 and λ1 can almost not be separated out in measurements.

Solution 2.2: Electrons (material particle) manifesting as waves
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(a) Refer to the figure. The extra length travelled by the second ray is d sin φ + d sin φ = 2d sin φ. So, for the two
rays to interfere constructively, this path difference should be an integral multiples of λ, the wavelength of the
incoming wave (or electrons), that is, 2d sin θ = nλ. This is Bragg’s reflection condition.

(b) For the given kinetic energy, the de-Broglie wavelength can be calculated to be

λ =
h

p
=

h√
2mE

=
6.6× 10−34

2× 9.1× 10−31 × 60× 1.6× 10−19
= 1.57Å

(c) Since n = 1, we have 2d sinφ = λ. This gives sinφ =
λ

2d
=

1.57
2× 0.91

= 0.862, that is, φ = 59.50.
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(d) Here we have n = 3, φ = 59.50, d = 0.91 Å. Therefore the required wavelength is given by λ =
2
3
d sin φ = 0.523

Å. The required energy of the photons is therefore

E =
p2

2m
=

(
h

λ

)2 1
2m

=
(6.6× 10−34)2

(0.523× 10−10)22× 9.1× 10−31
= 550 eV.

Solution 2.3: Young’s double-slit interference with particles

(a) The form of the wave amplitude is given by E(~r, t) = Aei(kz−ωt). So, the incident wave amplitude at the double-
slit plane (z = 0) is of the form E(~r, t) = Ae−iωt. We are interested in finding the intensity at the observation
point ( ~r0, t). The total field E( ~r0, t) at the observation point is equal to the sum of the fields coming from the
two slits. This can be written as

E( ~r0, t) = C0E( ~r1, t− t1) + C0E( ~r2, t− t2).

Here C0 is a constant that appears because only a fraction of the field present at the slits will reach the observation
point. Using the form of the incident field at the double-slit plane, we write the above equation as

E( ~r0, t) = C0Ae−iω(t−t1) + C0Ae−iω(t−t2)

Here t1 =
R1

v
and t2 =

R2

v
, where v is the speed of the incoming waves. Also substituting ω =

2πv

λ
, the above

expression can be written as

E( ~r0, t) = C0A exp
[
−i

[
2πv

λ

(
t− R1

v

)]]
+ C0A exp

[
−i

[
2πv

λ

(
t− R2

v

)]]

= C0A exp [−ik (vt−R1)] + C0A exp [−ik (vt−R2)]

The expression for the intensity at the screen now takes the following form

I( ~r0, t) = |E( ~r0, t)|2 = |C0A|2 [1 + cos k(R2 −R1)]

Using x, d and R, as shown in the figure, R2 −R1 can be written as

R2 −R1 =

√
R2 +

(
x +

d

2

)2

−
√

R2 +
(

x− d

2

)2

= R

[
1 +

(x + d
2 )2

R2

]1/2

−R

[
1 +

(x− d
2 )2

R2

]1/2

≈ R

[
1 +

(x + d
2 )2

2R2

]
−R

[
1 +

(x− d
2 )2

2R2

]

= R

[
(x + d

2 )2

2R2
− (x− d

2 )2

2R2

]
= R

[
2xd

2R2

]
=

xd

R

The intensity expression above can now be written as

I( ~r0, t) = |C0A|2
[
1 + cos

(
kxd

R

)]

The fringe period is therefore equal to
2πR

kd
=

λR

d
.

(b) For R = 1 m, d = 1 mm, and λ = 5000 Å. The fringe period is

λR

d
=

5000× 10−10 × 1
1× 10−3

= 5× 10−4 m = 0.5 mm.
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(c) For a bullet of mass m = 60 g moving with speed of v = 200 m/s, the de-Broglie wavelength is λ =
h

p
=

6.6× 10−34

0.06× 200
= 5.5× 10−35 m. For R = 1 m, d = 1 mm, the fringe period is

λR

d
=

5.5× 10−35 × 1
1× 10−3

= 5.5× 10−32 m

(d) Since the fringe period is very very small, it is impossible to observe the fringes. To be able to see such fringes,
we need bullet-detectors with spatial resolution smaller than 10−32 m. However, any realistic bullet-detector has
the spatial resolution in centimeters (size of the bullet). So, what is detected by these bullet-detectors is intensity
averaged over many fringe periods and therefore a bullet detector never sees the interference pattern.

Solution 2.4: Miscellaneous Conceptual Questions

(a) Increasing the intensity certainly increases the energy per unit area per unit time but when we have photons
increasing the intensity only means increasing the number of photons falling per unit area per unit time. How-
ever, the energy of individual photons depends only on frequency and doesn’t depend on the intensity. In the
photoelectric effect, the kinetic energy of the ejected electron depends on the energy of the individual incoming
photons and so it remains independent of the intensity.

(b) In a Young’s double-slit experiment with particles (photons, electorns, etc.), individual particles go one-at-a-time
through one of the two slits and over a period of time one observes intensity fringes on a screen placed at some
distance from the double-slit plane. Since the individual particles pass through one-at-a-time, one can ask as
to which slit the individual particles pass through. One can get the answer to this question, for example, by
putting some kind of particle detector on the slits itself. However, if one gains the information as to which
slit the particles go through, one looses the interference on the screen. In fact, the degree to which one knows
the which-slit information (particle behaviour), one looses the interference visibility to precisely the same degree
(wave behaviour). This is Bohr’s complementarity principle.

(c) The main difference between the wave-function ψ(x, t) representing a quantum particle and the function E(x, t)
representing the wave-amplitude of a classical wave is that division of wave-amplitude (as in interference exper-
iments) also implies division of energy but the division of wave-function (again as in interference experiments)
does not imply the division of energy.

(d) A photon interferes with itself.
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