Department of Physics
IIT Kanpur, Semester II, 2016-17

Solution 3.1:

Intensity of a beam

$$
\begin{equation*}
I=\frac{\text { Energy }}{A t} \tag{1}
\end{equation*}
$$

where A is the cross-sectional area of the beam and t is time for which radiation falls on to the area A. If the beam has n photons per unit cross-sectional area of the beam, per second, then

$$
\begin{equation*}
I=\frac{n h c \times A t c}{\lambda A t}=\frac{n h c^{2}}{\lambda} \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& I_{1}=\frac{n_{1} h c^{2}}{\lambda_{1}} \tag{3}\\
& I_{2}=\frac{n_{2} h c^{2}}{\lambda_{2}} \tag{4}
\end{align*}
$$

Again,

$$
\begin{array}{r}
I_{1}=I_{2} \\
\frac{n_{1}}{n_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \tag{6}
\end{array}
$$

Solution 3.2: Compton Effect

The conservation of momentum requires that

$$
\begin{array}{r}
P_{0}= \\
P_{1} \cos \theta+P \cos \phi \tag{8}\\
P \sin \theta=P \sin \phi
\end{array}
$$

FIG. 1: Compton Sacttering

From equation (7) and (8) we get

$$
\begin{array}{r}
\frac{P_{0}-P_{1} \cos \theta}{\cos \phi}=\frac{P_{1} \sin \theta}{\sin \phi} \\
\frac{h}{\lambda_{0}}-\frac{h}{\lambda_{1}} \cos \theta=\frac{h}{\lambda_{1}} \frac{\sin \theta}{\tan \phi} \\
\frac{1}{\lambda_{0}}=\frac{1}{\lambda_{1}}\left(\cos \theta+\frac{\sin \theta}{\tan \phi}\right) \\
\frac{\lambda_{1}}{\lambda_{0}}=\cos \theta+\frac{\sin \theta}{\tan \phi} \tag{12}
\end{array}
$$

From the homework 2.1 (a) we already have that

$$
\begin{gather*}
\lambda_{1}-\lambda_{0}=\frac{h}{m_{0} c}(1-\cos \theta) \tag{13}\\
\frac{\lambda_{1}}{\lambda_{0}}=1+\frac{h}{m_{0} c \lambda_{0}}(1-\cos \theta) \tag{14}
\end{gather*}
$$

From equation (12) and (14) we can write

$$
\begin{array}{r}
\cos \theta+\frac{\sin \theta}{\tan \phi}=1+\frac{h}{\lambda_{0} m_{0} c}(1-\cos \theta) \\
\frac{\sin \theta}{\tan \phi}=(1-\cos \theta)\left[1+\frac{h}{\lambda_{0} m_{0} c}\right] \\
\frac{\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)}{\tan \phi}=2 \sin ^{2}\left(\frac{\theta}{2}\right)\left[1+\frac{h}{\lambda_{0} m_{0} c}\right] \\
\cot \left(\frac{\theta}{2}\right)=\tan \phi\left[1+\frac{h}{\lambda_{0} m_{0} c}\right] \tag{18}
\end{array}
$$

Solution 3.3:de-Broglie wavelength

The de-Broglie wavelength is given by

$$
\begin{equation*}
\lambda=\frac{h}{p} \tag{19}
\end{equation*}
$$

where p is the momentum of the particle. For a free particle of mass m_{0} and kinetic energy K , we have the total relativistic energy E given by

$$
\begin{array}{r}
E=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}=K+m_{0} c^{2} \\
\Longrightarrow p^{2} c^{2}+m_{0}^{2} c^{4}=\left(K+m_{0} c^{2}\right)^{2} \\
\quad \Longrightarrow p=\sqrt{\frac{K^{2}+2 K m_{0} c^{2}}{c^{2}}} \tag{22}
\end{array}
$$

Substituting equation (22) in equation (19)

$$
\begin{equation*}
\lambda=\frac{h c}{\sqrt{K^{2}+2 K m_{0} c^{2}}} \tag{23}
\end{equation*}
$$

In the non-relativistic limit, $m_{0} c^{2} \gg K$,

$$
\begin{equation*}
K^{2}+2 K m_{0} c^{2} \approx 2 K m_{0} c^{2} \tag{24}
\end{equation*}
$$

Using the above equation the de-Broglie wavelength for non-relativistic particle

$$
\begin{equation*}
\lambda=\frac{h}{\sqrt{2 m_{0} K}}=\frac{h}{\sqrt{m_{0} v}} \tag{25}
\end{equation*}
$$

Solution 3.4

Since the smallest feature size is $0.1 \AA$, the required de-Broglie wavelength should be $0.1 \AA$. So, the required momentum is $p=\frac{h}{\lambda}$.
(a) For an electron the total relativistic energy

$$
\begin{array}{r}
E=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}} \text { Joule } \\
m_{0} c^{2}=0.511 \times 10^{6} \mathrm{eV}
\end{array}
$$

Therefore,

$$
E=\sqrt{\frac{h c}{\lambda}\left(\frac{1}{1.602 \times 10^{-19}}\right)^{2}+\left(0.511 \times 10^{6}\right)^{2}}=0.5258 \times 10^{6} \mathrm{eV}
$$

So, the required energy is

$$
K=E-m_{0} c^{2}=(0.5258-0.511) \times 10^{6}=14.8 \mathrm{KeV}
$$

(b) For a photon

$$
E=\frac{h c}{\lambda} \frac{1}{1.602 \times 10^{-19}}=124 \mathrm{KeV}
$$

(c) Electrons would be prefered. They are less energetic and so a milder shielding would be required to the γ-ray photon.

Solution 3.5: Linear Algebra

$$
\left.\left|V_{1}>=\left(\begin{array}{c}
1 \\
i \\
0
\end{array}\right) \quad\right| V_{2}>=\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) \quad \right\rvert\, V_{3}>=\left(\begin{array}{c}
0 \\
i \\
1
\end{array}\right)
$$

(a) We have the matrix

$$
U=\left(\begin{array}{lll}
1 & 0 & 1 \\
i & 0 & i \\
0 & 1 & 1
\end{array}\right)
$$

consist of three vectors

$$
\operatorname{det} U=2 i \neq 0 \Longrightarrow \operatorname{det} U \neq 0
$$

Therefore, the vectors are linearly independent.
(b)

$$
\begin{aligned}
& <V_{1} \left\lvert\, V_{2}>=\left(\begin{array}{lll}
1 & -i & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right)=1\right. \\
& <V_{2} \left\lvert\, V_{3}>=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
-i \\
1
\end{array}\right)=1\right. \\
& <V_{3} \left\lvert\, V_{1}>=\left(\begin{array}{lll}
0 & -i & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
i \\
0
\end{array}\right)=1\right.
\end{aligned}
$$

Therefore, the three vectors are not orthogonal
(c) The above states are not orthogonal but they are linearly independent.So, the basis vectors can be constructed through Gram-Schimdt procedure.
The first basis vector $\mid x_{1}>$ is

$$
\left\lvert\, x_{1}>=\frac{\mid V_{1}>}{\sqrt{<V_{1} \mid V_{1}>}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)\right.
$$

The second basis vector $\mid x_{2}>$ can be calculated as

$$
\left\lvert\, x_{2}>=\frac{\mid x_{2}^{\prime}>}{\sqrt{<x_{2}^{\prime}\left|x_{2}^{\prime}\right\rangle}}\right.
$$

where,

$$
\left|x_{2}^{\prime}>=\left|V_{2}>-\left|x_{1}><x_{1}\right| V_{2}>=\left(\begin{array}{c}
1 / 2 \\
-i / 2 \\
1
\end{array}\right)\right.\right.
$$

Therefore,

$$
\left\lvert\, x_{2}>=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 / 2 \\
-i / 2 \\
1
\end{array}\right)\right.
$$

The third basis vector

$$
\left\lvert\, x_{3}>=\frac{\left|x_{3}^{\prime}\right\rangle}{\sqrt{<x_{3}^{\prime}\left|x_{3}^{\prime}\right\rangle}}\right.
$$

where,

$$
\left|x_{3}^{\prime}>=\left|V_{3}>-\left|x_{1}><x_{1}\right| V_{3}>-\left|x_{2}><x_{2}\right| V_{3}>=\frac{2}{3}\left(\begin{array}{c}
-1 \\
i \\
1
\end{array}\right)\right.\right.
$$

Therefore,

$$
\left\lvert\, x_{3}>=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
i \\
1
\end{array}\right)\right.
$$

(d) There can many other sets of orthogonal vectors. For example

$$
\begin{gathered}
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

