## End-Semester Examination

(Answer all 8 questions. Calculators are not allowed.)


## Problem 1:

(a) Consider a particle in the $n^{\text {th }}$ stationary state of a potential at time $t=t_{1}$. Find the probability that the particle is found in the $(n+1)^{\text {th }}$ stationary state at time $t=t_{2}$. ( 2 marks)
(b) The expectation value of an operator $\hat{\mathrm{A}}$ is defined as $\langle\hat{\mathrm{A}}\rangle \equiv\langle\psi| \hat{\mathrm{A}}|\psi\rangle$. Express $\langle\psi| \hat{\mathrm{A}}|\psi\rangle$ in the position basis. (2 marks)
(c) If two operators $\hat{\mathrm{A}}$ and $\hat{\mathrm{B}}$ have complete set of common eigenfunctions, Evaluate the commutator $[\hat{\mathrm{A}}, \hat{\mathrm{B}}]$. (3 marks)
(d) Find out whether the expectation value of an anti-hermitian operator $\hat{Q}\left(\hat{Q}^{\dagger}=-\hat{Q}\right)$ is real or imaginary. (3 marks)

## Problem 2:

(a) If $\hat{\mathrm{H}}$ is a Hermitian matrix, then show that $e^{i \hat{\mathrm{H}}}$ is a unitary matrix. (3 marks)
(b) If $\psi(x)=e^{i p_{0} x / \hbar}$ is the position-basis wave function of a quantum system with $p_{0}$ being a constant, find the momentum-basis wave function of the quantum system. (3 marks)
(c) For the harmonic potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, the ground-state wave function is given by: $\psi_{0}(x)=$ $\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right)$ with energy $E_{0}=\frac{1}{2} \hbar \omega$. Calculate the first-order correction to the ground-state energy for the potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}-c x$, where $c \ll \sqrt{m \omega^{2}}$. (3 marks)
(d) For each of the three potentials $V(x)$ shown below, state whether a particle of energy $E$ will be in a bound state or in a scattering state. (3 marks)

(ii)


## Problem 3:

Consider a free particle of mass $m$ in the 3-dimensional cartesian space.
(a) Solve the 3 -dimensional Schrödinger equation and derive the most general solution for the wave function. (8 marks)
(b) From the general solution, find out the solution representing a wave moving along a direction with all positive directions cosines. (4 marks)

## Problem 4:

Consider a particle of mass $m$ in an infinite well potential of width $a$. The intial wave function $\psi(x, 0)$ at time $t=0$ of the particle is given by:

$$
\begin{aligned}
\psi(x, 0) & =A x & & \text { for } a \leq x \leq \frac{a}{2} \\
& =A(a-x) & & \text { for } \frac{a}{2} \leq x \leq a .
\end{aligned}
$$

(a) Find the normalization constant $A$ of the wave function $\psi(x, 0)$. (3 marks)
(b) Find the wave function $\psi(x, t)$ at a later time $t$. ( 10 marks)
(c) What is the probability that the particle is found to have Energy $E_{1}$, where $E_{n}$ is the energy corresponding to the $n^{\text {th }}$ stationary state of the potential. (3 marks)

Problem 5:
The Hamiltonian $\hat{H}$ for a three-level system is given by $\hat{H}=\left(\begin{array}{ccc}a & 0 & b \\ 0 & c & 0 \\ b & 0 & a\end{array}\right)$, where $a, b$, and $c$ are real and $a-c \neq \pm b$.
(a) Find out the stationary-state eigenvectors and the corresponding stationary-state energies. (8 marks)
(b) If the state of the system at time $t=0$ is given by $|\psi(0)\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, find out the state $|\psi(t)\rangle$ at time $t$. (7 marks)

## Problem 6:

Consider a particle of mass $m$ with the following wave function

$$
\begin{aligned}
\psi(x, t) & =A \sin (2 \pi x / a) e^{-i E t / \hbar} & & \text { for } 0 \leq x \leq a \\
& =0 & & \text { otherwise }
\end{aligned}
$$

where $a$ and $A$ are constants. [Useful Formula: $\int_{0}^{a} x^{2} \sin \left(\frac{2 \pi x}{a}\right) d x=\frac{a^{3}}{6}-\frac{a^{3}}{16 \pi^{2}}$ ].
(a) Assuming the potential $V(x)=0$ for $0 \leq x \leq a$, express the particle energy $E$ in terms of $a$ and $m$. (3 marks)
(b) What is the value of the normalization constant $A$. ( 2 marks)
(c) Calculate the uncertainties $\Delta X$ and $\Delta P$. (8 marks)
(d) Find out the factor by which the uncertainty product is greater than the minimum uncertainty product. marks)

## Problem 7:

A free particle of mass $m$ and kinetic energy $E=V_{0} / 3$ approaches a potential from left as shown in the figure. Calculate the probability that the particle gets reflected back. (8 marks)


## Problem 8:

Consider a particle of mass $m$ in a Dirac-delta potential $V(x)$ given by $V(x)=-\alpha \delta(x)$, where $\alpha$ is a positive real number. If the energy of the particle $E<0$ :
(a) Find the stationary state wave function $\psi(x)$ of the particle. (8 marks)
(b) Calculate the probability that the particle is found between $x=-a$ and $x=a$. (4 marks)

