Semester II, 2016-17; IIT Kanpur

End-Semester Examination

April 30th, 2017

Time: 9:00 am -12:00 $\rm pm$

Maximum Marks: 100

(Answer all 8 questions. Calculators are not allowed.)

NAME ROLL NO	Marks Obtained
	Q-01
CLASS SECTION	Q-02
SUBJECT	Q-03
DATE	Q-04
	Q-05
	Q-06
I PLEDGE MY HONOUR AS A GENTLEMAN / LADY THAT DURING THE EXAMINATION I HAVE NEITHER GIVEN ASSISTANCE NOR RECEIVED ASSISTANCE	Q-07
	Q-08
	Q-09
	Q-10
	Total
Signature	L

Problem 1:

- (a) Consider a particle in the n^{th} stationary state of a potential at time $t = t_1$. Find the probability that the particle is found in the $(n + 1)^{\text{th}}$ stationary state at time $t = t_2$. (2 marks)
- (b) The expectation value of an operator \hat{A} is defined as $\langle \hat{A} \rangle \equiv \langle \psi | \hat{A} | \psi \rangle$. Express $\langle \psi | \hat{A} | \psi \rangle$ in the position basis. (2 marks)
- (c) If two operators and B have complete set of common eigenfunctions, Evaluate the commutator [Â, B]. (3 marks)
- (d) Find out whether the expectation value of an anti-hermitian operator \hat{Q} ($\hat{Q}^{\dagger} = -\hat{Q}$) is real or imaginary. (3 marks)

Problem 2:

- (a) If \hat{H} is a Hermitian matrix, then show that $e^{i\hat{H}}$ is a unitary matrix. (3 marks)
- (b) If $\psi(x) = e^{ip_0 x/\hbar}$ is the position-basis wave function of a quantum system with p_0 being a constant, find the momentum-basis wave function of the quantum system. (3 marks)
- (c) For the harmonic potential $V(x) = \frac{1}{2}m\omega^2 x^2$, the ground-state wave function is given by: $\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$ with energy $E_0 = \frac{1}{2}\hbar\omega$. Calculate the first-order correction to the ground-state energy for the potential $V(x) = \frac{1}{2}m\omega^2 x^2 cx$, where $c \ll \sqrt{m\omega^2}$. (3 marks)
- (d) For each of the three potentials V(x) shown below, state whether a particle of energy E will be in a bound state or in a scattering state. (3 marks)

Problem 3:

Consider a free particle of mass m in the 3-dimensional cartesian space.

- (a) Solve the 3-dimensional Schrödinger equation and derive the most general solution for the wave function. (8 marks)
- (b) From the general solution, find out the solution representing a wave moving along a direction with all positive directions cosines. (4 marks)

Problem 4:

Consider a particle of mass m in an infinite well potential of width a. The initial wave function $\psi(x, 0)$ at time t = 0 of the particle is given by:

$$\psi(x,0) = Ax \qquad \text{for } a \le x \le \frac{a}{2}$$
$$= A(a-x) \qquad \text{for } \frac{a}{2} \le x \le a$$

- (a) Find the normalization constant A of the wave function $\psi(x, 0)$. (3 marks)
- (b) Find the wave function $\psi(x, t)$ at a later time t. (10 marks)
- (c) What is the probability that the particle is found to have Energy E_1 , where E_n is the energy corresponding to the n^{th} stationary state of the potential. (3 marks)

Problem 5:

The Hamiltonian \hat{H} for a three-level system is given by $\hat{H} = \begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ b & 0 & a \end{pmatrix}$, where a, b, and c are real and $a - c \neq \pm b$.

(a) Find out the stationary-state eigenvectors and the corresponding stationary-state energies. (8 marks)

(b) If the state of the system at time
$$t = 0$$
 is given by $|\psi(0)\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$, find out the state $|\psi(t)\rangle$ at time t. (7 marks)

Problem 6:

Consider a particle of mass m with the following wave function

$$\psi(x,t) = A\sin(2\pi x/a)e^{-iEt/\hbar} \qquad \text{for } 0 \le x \le a$$
$$= 0 \qquad \text{otherwise.}$$

where *a* and *A* are constants. [Useful Formula: $\int_0^a x^2 \sin\left(\frac{2\pi x}{a}\right) dx = \frac{a^3}{6} - \frac{a^3}{16\pi^2}$].

- (a) Assuming the potential V(x) = 0 for $0 \le x \le a$, express the particle energy E in terms of a and m. (3 marks)
- (b) What is the value of the normalization constant A. (2 marks)
- (c) Calculate the uncertainties ΔX and ΔP . (8 marks)
- (d) Find out the factor by which the uncertainty product is greater than the minimum uncertainty product. (2 marks)

Problem 7:

A free particle of mass m and kinetic energy $E = V_0/3$ approaches a potential from left as shown in the figure. Calculate the probability that the particle gets reflected back. (8 marks)

Problem 8:

Consider a particle of mass m in a Dirac-delta potential V(x) given by $V(x) = -\alpha \delta(x)$, where α is a positive real number. If the energy of the particle E < 0:

- (a) Find the stationary state wave function $\psi(x)$ of the particle. (8 marks)
- (b) Calculate the probability that the particle is found between x = -a and x = a. (4 marks)