PSO201A: Quantum Physics

Semester II, 2016-17; IIT Kanpur

Mid-Semester Examination

March 3rd, 2017 Time: 1:

Time: 1:00-3:00 $\rm pm$

Maximum Marks: 100

(Answer all 6 questions. Calculators are not allowed. Some important constants are provided below.)

1. Stefan's-Boltzmann's constant: $\sigma = 5.67 \times 10^{-8} \ {\rm W/m^2-K^4}$

- 2. Wein's constant = 2.898×10^{-3} m-K
- 3. Planck's constant: $h = 6.626 \times 10^{-34}$ joule-sec

NAME ROLL NO	Marks Obtained
	Q-01
CLASS SECTION	Q-02
SUBJECT	Q-03
DATE	Q-04
	Q-05
	Q-06
I PLEDGE MY HONOUR AS A GENTLEMAN / LADY THAT DURING THE EXAMINATION I HAVE NEITHER GIVEN ASSISTANCE NOR RECEIVED ASSISTANCE	Q-07
	Q-08
	Q-09
	Q-10
	Total
Signature	L

Problem 1:

- (a) In a nuclear reaction the temperature of the rising fireball reaches 10^7 K at some instant. What is the wavelength at which the emitted radiation is a maximum at that instant. (3 marks)
- (b) If the surface temperature of the Sun is 5000 K, calculate the approximate energy lost to radiation per unit time per unit area of the Sun's surface. (3 marks)
- (c) Write the following in the position basis: $\langle \psi_1 | \hat{\Omega} | \psi_2 \rangle$. (3 marks)
- (d) Find the adjoint of the equation: $|\psi\rangle = a|\psi_1\rangle + b|\psi_2\rangle\langle\psi_3|\psi_4\rangle + \sum_i |\psi_5\rangle\langle\psi_6|\hat{\Omega}|v_i\rangle\langle w_i|\psi_7\rangle$. (3 marks)
- (e) Show that the uncertainty in the energy ΔE of a particle in a stationary state is zero. (3 marks)

Problem 2:

- (a) Explicitly work out the commutator: $[\hat{X}, \hat{P}]$, where \hat{X} is the position operator and \hat{P} is the momentum operator. (10 marks)
- (b) Assuming no degeneracy and using Dirac notations, prove that the eigenvectors of a Hermitian operator are mutually orthogonal. (10 marks)

Problem 3: If $|x\rangle$ and $|p\rangle$ are the position and momentum eigetkets with eigenvalues x and p, respectively.

- (a) Work out the inner product $\langle x|p\rangle$. (8 marks)
- (b) For a quantum state $|\psi\rangle$, express the momentum-basis wave function $\psi(p)$ in terms of the position-basis wave function $\psi(x)$. (3 marks)
- (c) write the following completeness relationship in the position basis: $\int_{\infty}^{\infty} |p\rangle \langle p|dp = I$. (4 marks)

Problem 4: Suppose the position-basis wave function $\Psi(x,t)$ of a particle is given by $\Psi(x,t) = \frac{1}{\sqrt{2}} [\Psi_1(x,t) + \Psi_2(x,t)]$, where $\Psi_1(x,t)$ and $\Psi_2(x,t)$ are the two normalized stationary-state solutions to the Schrödinger equation with energies E_1 and E_2 , respectively, with $\Psi_1(x,0) = \psi_1(x)$ and $\Psi_2(x,0) = \psi_2(x)$.

(a) Find out the position probability density of the particle at time t in terms of ψ_1 , ψ_2 , E_1 , and E_2 . (7 marks)

(b) What is the expectation value $\langle E \rangle$ for energy? (8 marks)

Problem 5: The position-basis wave function $\psi(x)$ of a particle is given by

$$\psi(x) = A; \quad \text{if} \quad -\left(\frac{R+d}{2}\right) < x < -\left(\frac{R-d}{2}\right) \quad \text{and} \quad \left(\frac{R-d}{2}\right) < x < \left(\frac{R+d}{2}\right) \\ = 0; \quad \text{otherwise.}$$

(Take $R \gg 2d$)

- (a) Find the normalization constant A. (2 marks)
- (b) Calculate and plot the position probability density that a particle is found at position x. (2 marks)
- (c) Calculate and plot the momentum probability density that the particle is found with momentum p. (6 marks)

Problem 6: Consider an infinite potential well of width *a* centered at x = 0. The position-basis wave function of the n^{th} stationary state $\psi_n(x)$ is given by

For
$$n = 1, 3, 5, ...$$
 $\psi_n(x) = \sqrt{\frac{2}{a}} \cos\left(\frac{n\pi x}{a}\right);$ if $-\frac{a}{2} \le x \le \frac{a}{2}$
 $= 0$ else.
For $n = 2, 4, 6, ...$ $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right);$ if $-\frac{a}{2} \le x \le \frac{a}{2}$
 $= 0$ else.

Suppose that the particle is in the ground state (n = 1) of the potential,

- (a) Find the probability that the particle is found between x = -a/4 and x = a/4. (5 marks)
- (b) What is the expectation value $\langle x \rangle$ for position? (3 marks)
- (c) What is the expectation value $\langle p \rangle$ for momentum? (3 marks)
- (d) Now, suppose that the potential well suddenly expands symmetrically to twice its size. Calculate the probability of finding the particle in the ground state of the new potential well. **(14 marks)**