Mid-Semester Examination

March 3rd, 2017
Time: 1:00-3:00 pm
Maximum Marks: 100
(Answer all 6 questions. Calculators are not allowed. Some important constants are provided below.)

1. Stefan's-Boltzmann's constant: $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}^{4}$
2. Wein's constant $=2.898 \times 10^{-3} \mathrm{~m}-\mathrm{K}$
3. Planck's constant: $h=6.626 \times 10^{-34}$ joule-sec

NAME ROLL NO.

Marks Obtained

CLASS SECTION \qquad

SUBJECT

Q-03
Q-0

DATE

I PLEDGE MY HONOUR AS A GENTLEMAN / LADY THAT DURING THE EXAMINATION I HAVE NEITHER GIVEN ASSISTANCE NOR RECEIVED ASSISTANCE

Problem 1:

(a) In a nuclear reaction the temperature of the rising fireball reaches $10^{7} \mathrm{~K}$ at some instant. What is the wavelength at which the emitted radiation is a maximum at that instant. ($\mathbf{3}$ marks)
(b) If the surface temperature of the Sun is 5000 K , calculate the approximate energy lost to radiation per unit time per unit area of the Sun's surface. (3 marks)
(c) Write the following in the position basis: $\left\langle\psi_{1}\right| \hat{\Omega}\left|\psi_{2}\right\rangle$. (3 marks)
(d) Find the adjoint of the equation: $|\psi\rangle=a\left|\psi_{1}\right\rangle+b\left|\psi_{2}\right\rangle\left\langle\psi_{3} \mid \psi_{4}\right\rangle+\sum_{i}\left|\psi_{5}\right\rangle\left\langle\psi_{6}\right| \hat{\Omega}\left|v_{i}\right\rangle\left\langle w_{i} \mid \psi_{7}\right\rangle$. (3 marks)
(e) Show that the uncertainty in the energy ΔE of a particle in a stationary state is zero. (3 marks)

Problem 2:

(a) Explicitly work out the commutator: $[\hat{X}, \hat{\mathrm{P}}]$, where $\hat{\mathrm{X}}$ is the position operator and $\hat{\mathrm{P}}$ is the momentum operator. (10 marks)
(b) Assuming no degeneracy and using Dirac notations, prove that the eigenvectors of a Hermitian operator are mutually orthogonal. (10 marks)

Problem 3: If $|x\rangle$ and $|p\rangle$ are the position and momentum eigetkets with eigenvalues x and p, respectively.
(a) Work out the inner product $\langle x \mid p\rangle$. (8 marks)
(b) For a quantum state $|\psi\rangle$, express the momentum-basis wave function $\psi(p)$ in terms of the position-basis wave function $\psi(x)$. (3 marks)
(c) write the following completeness relationship in the position basis: $\int_{\infty}^{\infty}|p\rangle\langle p| d p=$ I. (4 marks)

Problem 4: Suppose the position-basis wave function $\Psi(x, t)$ of a particle is given by $\Psi(x, t)=\frac{1}{\sqrt{2}}\left[\Psi_{1}(x, t)+\Psi_{2}(x, t)\right]$, where $\Psi_{1}(x, t)$ and $\Psi_{2}(x, t)$ are the two normalized stationary-state solutions to the Schrödinger equation with energies E_{1} and E_{2}, respectively, with $\Psi_{1}(x, 0)=\psi_{1}(x)$ and $\Psi_{2}(x, 0)=\psi_{2}(x)$.
(a) Find out the position probability density of the particle at time t in terms of $\psi_{1}, \psi_{2}, E_{1}$, and E_{2}. (7 marks)
(b) What is the expectation value $\langle E\rangle$ for energy? (8 marks)

Problem 5: The position-basis wave function $\psi(x)$ of a particle is given by

$$
\begin{aligned}
\psi(x) & =A ; \quad \text { if } \quad-\left(\frac{R+d}{2}\right)<x<-\left(\frac{R-d}{2}\right) \quad \text { and } \quad\left(\frac{R-d}{2}\right)<x<\left(\frac{R+d}{2}\right) \\
& =0 ; \quad \text { otherwise. }
\end{aligned}
$$

(Take $R \gg 2 d$)
(a) Find the normalization constant A. (2 marks)
(b) Calculate and plot the position probability density that a particle is found at position x. (2 marks)
(c) Calculate and plot the momentum probability density that the particle is found with momentum p. (6 marks)

Problem 6: Consider an infinite potential well of width a centered at $x=0$. The position-basis wave function of the $n^{\text {th }}$ stationary state $\psi_{n}(x)$ is given by

$$
\text { For } \begin{array}{rlrl}
n=1,3,5, \ldots & & \psi_{n}(x) & =\sqrt{\frac{2}{a}} \cos \left(\frac{n \pi x}{a}\right) ; \\
& =0 & \text { if } \quad-\frac{a}{2} \leq x \leq \frac{a}{2} \\
\text { For } n=2,4,6, \ldots & & \psi_{n}(x) & =\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) ; \\
& =0 & \text { if } \quad-\frac{a}{2} \leq x \leq \frac{a}{2} \\
& & & \text { else. }
\end{array}
$$

Suppose that the particle is in the ground state $(n=1)$ of the potential,
(a) Find the probability that the particle is found between $x=-a / 4$ and $x=a / 4$. (5 marks)
(b) What is the expectation value $\langle x\rangle$ for position? (3 marks)
(c) What is the expectation value $\langle p\rangle$ for momentum? (3 marks)
(d) Now, suppose that the potential well suddenly expands symmetrically to twice its size. Calculate the probability of finding the particle in the ground state of the new potential well. (14 marks)

