
PSO201A: Quantum Physics Semester II, 2016-17; IIT Kanpur

Mid-Semester Examination (Solutions)

March 3rd, 2017 Time: 1:00-3:00 pm Maximum Marks: 100

(Answer all 6 questions. Calculators are not allowed. Some important constants are provided below.)

1. Stefan’s-Boltzmann’s constant: σ = 5.67× 10−8 W/m2−K4.

2. Wein’s constant = 2.898× 10−3 m-K

3. Planck’s constant: h = 6.626× 10−34 joule-sec

Problem 1:

(a) In a nuclear reaction the temperature of the rising fireball reaches 107 K at some instant. What is the wavelength
at which the emitted radiation is a maximum at that instant. (3 marks)

(b) If the surface temperature of the Sun is 5000 K, calculate the approximate energy lost to radiation per unit time
per unit area of the Sun’s surface. (3 marks)

(c) Write the following in the position basis: 〈ψ1|Ω̂|ψ2〉. (3 marks)

(d) Find the adjoint of the equation: |ψ〉 = a|ψ1〉+ b|ψ2〉〈ψ3|ψ4〉+
∑

i |ψ5〉〈ψ6|Ω̂|vi〉〈wi|ψ7〉. (3 marks)

(e) Show that the uncertainty in the energy ∆E of a particle in a stationary state is zero. (3 marks)

Solution 1:

(a) Wein’s displacement law says λmaxT = 2.898× 10−3 m-K. Therefore, we have λmax =
2.898× 10−3

107
m = 2.898 Å.

(b) The energy lost to radiation per unit time per unit area of the of the Sun’s surface is given by Stefan’s law. The
energy lost= σT 4 = 5.67× 10−8 × (5000)4 = 5.67× 625× 104 ≈ 3.54× 107 W/m2.

(c)

〈ψ1|Ω̂|ψ2〉 =
∫∫

〈ψ1|x〉〈x|Ω̂|x′〉〈x′|ψ2〉dxdx′ =
∫∫

ψ∗1(x)Ωxx′ψ2(x)dxdx′

=
∫∫

ψ∗1(x)δ(x− x′)Ω(x′,−i~
∂

∂x′
)ψ2(x)dxdx′ =

∫
ψ∗1(x)Ω

(
x,−i~

∂

∂x

)
ψ2(x)dx

(d) 〈ψ| = 〈ψ1|a∗ + 〈ψ4|ψ3〉〈ψ2|b∗ +
∑

i〈ψ7|wi〉〈vi|Ω̂†|ψ6〉〈ψ5|
(e) A stationary state wave-function can be written as Ψ(x, t) = ψ(x)e−iEt/~. We can calculate the energy expectation

value as follow:

〈E〉 =
∫ ∞

−∞
Ψ∗(x, t)

(
i~

∂

∂t

)
Ψ(x, t)dx = E

∫ ∞

−∞
ψ∗(x)ψ(x)dx = E (normalization condition)

〈E2〉 =
∫ ∞

−∞
Ψ∗(x, t)

(
i~

∂

∂t

)2

Ψ(x, t)dx = E2

∫ ∞

−∞
ψ∗(x)ψ(x)dx = E2

∆E =
√
〈E2〉 − 〈E〉2 = E2 − E2 = 0

Thus we see that the energy uncertainty of a stationary state is zero.



Problem 2:

(a) Explicitly work out the commutator: [X̂, P̂], where X̂ is the position operator and P̂ is the momentum operator.
(10 marks)

(b) Assuming no degeneracy and using Dirac notations, prove that the eigenvectors of a Hermitian operator are
mutually orthogonal. (10 marks)

Solutions 2:

(a) Let |ψ〉 be an arbitrary state. So, we can write

[X̂, P̂]|ψ〉 = (X̂P̂− P̂X̂)|ψ〉
=

∫∫∫ (
|x〉〈x|X̂|x′〉〈x′|P̂|x′′〉〈x′′| − |x〉〈x|P̂|x′〉〈x′|X̂|x′′〉〈x′′|

)
|ψ〉dxdx′dx′′

=
∫∫∫ [

|x〉δ(x− x′)x′δ(x′ − x′′)
(
−i~

d

dx′′

)
〈x′′| − |x〉δ(x− x′)

(
−i~

d

dx′

)
δ(x′ − x′′)x′′〈x′′|

]
|ψ〉dxdx′dx′′

=
∫ [

|x〉x
(
−i~

d

dx

)
〈x| − |x〉

(
−i~

d

dx

)
x〈x|

]
|ψ〉dx

= −i~
∫
|x〉〈x|

[
x

(
d

dx

)
−

(
d

dx

)
x

]
|ψ〉dx

We have
(

d

dx

)
xf(x) = f(x)+x

(
d

dx

)
f(x) =

(
1 + x

d

dx

)
f(x). Therefore, we have that

(
d

dx

)
x =

(
1 + x

d

dx

)
.

Using this result we can now write the above commutator as

[X̂, P̂]|ψ〉 = −i~
∫
|x〉〈x|

[
x

(
d

dx

)
− 1− x

(
d

dx

)]
|ψ〉dx

= i~
∫
|x〉〈x|dx|ψ〉

= i~I|ψ〉.

Here we have used the completeness condition
∫ |x〉〈x|dx = I. Thus we have

[X̂, P̂] = i~.

(b) Let |ψm〉 and |ψn〉 be two eigenvectors of a Hermitian operator Â with eigenvalues am and an, respectively. Thus

Â|ψm〉 = am|ψm〉 (1)

Â|ψn〉 = an|ψn〉 (2)

Taking the inner product on each side of the first equation with 〈ψn| we get

〈ψn|Â|ψm〉 = am〈ψn|ψm〉 (3)

Now we take the adjoint of the second equation and write is as

〈ψn|Â† = a∗n〈ψn|
or, 〈ψn|Â = an〈ψn|

Here, we have used the fact that Â is Hermitian, that is, Â† = Â and a∗n = an, since the eigenvalues of a Hermitian



operator are real. Taking the inner product on each side of the above equation with |ψm〉 we get

〈ψn|Â|ψm〉 = an〈ψn|ψm〉 (4)

Now, subtracting Eq. 3 for Eq. 4, we get

(an − am)〈ψn|ψm〉 = 0

Since, we have assumed that there is no degeneracy, an 6= am. Therefore,

〈ψn|ψm〉 = 0

Thus, we have that the eigenvectors of a Hermitian operator are orthogonal.



Problem 3: If |x〉 and |p〉 are the position and momentum eigetkets with eigenvalues x and p, respectively.

(a) Work out the inner product 〈x|p〉. (8 marks)

(b) For a quantum state |ψ〉, express the momentum-basis wave function ψ(p) in terms of the position-basis wave
function ψ(x). (3 marks)

(c) write the following completeness relationship in the position basis:
∫∞
∞ |p〉〈p|dp = I. (4 marks)

Solutions 3:

(a) Since |p〉 is the eigenket of the momentum operator P̂ , we have

P̂ |p〉 = p|p〉
Or, 〈x|P̂ |p〉 = p〈x|p〉

Expanding in the |x′〉, we get
∫
〈x|P̂ |x′〉〈x′|p〉dx′ = p〈x|p〉

Or,
∫

(−i~)δ(x− x′)
d

dx′
〈x′|p〉dx′ = p〈x|p〉

Or, (−i~)
d

dx
〈x|p〉 = p〈x|p〉

Solving the above first-order differential equation, we get

〈x|p〉 = Aeipx/~

Or, 〈p|x〉 = A∗e−ipx/~

Now, we need to find the constant A. Using the relation 〈x|x′〉 = δ(x − x′) and the completeness condition for
the momentum basis, we write

〈x|x′〉 = δ(x− x′)

Or,
∫
〈x|p〉〈p|x′〉dp = δ(x− x′)

Or,
∫
|A|2eipx/~ × e−ipx′/~dp = δ(x− x′)

Or, |A|2
∫

ei(x−x′)p/~dp = δ(x− x′)

Or, |A|22π~δ(x− x′) = δ(x− x′)

⇒ A =
1√
2π~

Thus we have the required inner product as

〈x|p〉 =
1√
2π~

eipx/~



(b) We have

ψ(p) = 〈p|ψ〉
Or, ψ(p) =

∫
〈p|x〉〈x|ψ〉dx

Or, ψ(p) =
∫
〈p|x〉ψ(x)dx

Or, ψ(p) = A

∫
e−ipx/~ψ(x)dx

(c) The completeness condition for the momentum eigenfunctions is :
∫ ∞

−∞
|p〉〈p|dp = I

Taking the inner product of the above equation with 〈x| from left and with |x′〉 from right, we get
∫ ∞

−∞
〈x|p〉〈p|x′〉dp = 〈x|I|x′〉

Or,
1

2π~

∫ ∞

−∞
eip(x−x′)/~dp = 〈x|x′〉

Or,
1

2π~

∫ ∞

−∞
eip(x−x′)/~dp = δ(x− x′)

This is the required position representation.



Problem 4: Suppose the position-basis wave function Ψ(x, t) of a particle is given by Ψ(x, t) =
1√
2
[Ψ1(x, t)+Ψ2(x, t)],

where Ψ1(x, t) and Ψ2(x, t) are the two normalized stationary-state solutions to the Schrödinger equation with energies
E1 and E2, respectively, with Ψ1(x, 0) = ψ1(x) and Ψ2(x, 0) = ψ2(x).

(a) Find out the position probability density of the particle at time t in terms of ψ1, ψ2, E1, and E2. (7 marks)

(b) What is the expectation value 〈E〉 for energy? (8 marks)

Solutions 4

(a) Ψ1(x, t) and Ψ2(x, t) are the two normalized stationary-state solutions, we have Ψ1(x, t) = ψ1(x)e−iE1t/~ and
Ψ2(x, t) = ψ2(x)e−iE2t/~. The required probability density is then given by

P (x, t) = Ψ∗(x, t)Ψ(x, t)

=
1
2

[Ψ∗1(x, t) + Ψ∗2(x, t)][Ψ1(x, t) + Ψ2(x, t)]

=
1
2

[
|ψ1(x)|2 + |ψ2(x)|2 + ψ∗1(x)ψ2(x)e−i(E2−E1)t/~ + ψ∗2(x)ψ1(x)ei(E2−E1)t/~

]

(b) The expectation value of energy 〈E〉 is given as

〈E〉 =
∫ ∞

−∞
Ψ∗(x, t)(i~

∂

∂t
)Ψ(x, t)dx =

1
2

[ ∫ ∞

−∞
Ψ∗1(x, t)(i~

∂

∂t
)Ψ1(x, t)dx +

∫ ∞

−∞
Ψ∗2(x, t)(i~

∂

∂t
)Ψ2(x, t)dx

+
∫ ∞

−∞
Ψ∗1(x, t)(i~

∂

∂t
)Ψ2(x, t)dx +

∫ ∞

−∞
Ψ∗2(x, t)(i~

∂

∂t
)Ψ1(x, t)dx

]

=
1
2

[
E1

∫ ∞

−∞
Ψ∗1(x, t)Ψ1(x, t)dx + E2

∫ ∞

−∞
Ψ∗2(x, t)Ψ2(x, t)dx

+ E2

∫ ∞

−∞
Ψ∗1(x, t)Ψ2(x, t)dx + E1

∫ ∞

−∞
Ψ∗2(x, t)Ψ1(x, t)dx

]

The first two integrals are unity because of the fact that the wave-functions are normalized. The last two integrals
are zero since they essentially are the inner products of two orthogonal functions. Thus we have

〈E(t)〉 =
E1 + E2

2



Problem 5: The position-basis wave function ψ(x) of a particle is given by

ψ(x) = A; if −
(

R + d

2

)
< x < −

(
R− d

2

)
and

(
R− d

2

)
< x <

(
R + d

2

)

= 0; otherwise.

(Take R À 2d)

(a) Find the normalization constant A. (2 marks)

(b) Calculate and plot the position probability density that a particle is found at position x. (2 marks)

(c) Calculate and plot the momentum probability density that the particle is found with momentum p. (6 marks)

Solutions 5:

(a) Normalizing the wave function, we get,
∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1

or,
∫ −( R−d

2 )

−( R+d
2 )

A2dx +
∫ ( R+d

2 )

( R−d
2 )

A2dx = 1

or, A2 × 2d = 1

or, A =

√
1
2d

(b) The plot of the probability density is as shown below:

x

P     (x)

d d

R

1/2d

(c) In order to calculate the momentum probability density, we need to first calculate the momentum-space wave-
function ψ(p), which is:

ψ(p) =
1√
2π~

∫ ∞

−∞
e−ipx/~ψ(x)dx

=
A√
2π~

[∫ −( R−d
2 )

−( R+d
2 )

e−ipx/~dx +
∫ ( R+d

2 )

( R−d
2 )

e−ipx/~dx

]

=
A√
2π~

dsinc
(

d

2~
p

)
2 cos

(
R

2~
p

)

Therefore, the momentum probability density is

P (p) = ψ∗(p)ψ(p) =
d

π~
sinc2

(
d

2~
p

)
cos2

(
R

2~
p

)



Below is the plot for the momentum probability density as a function of p. For the plot, we have taken R/d = 8.

The fringe period is equal to
4π~
R

and the first zero of the sinc function will appear at x = ±2π~
d

0 p

P(p)



Problem 6: Consider an infinite potential well of width a centered at x = 0. The position-basis wave function of the
nth stationary state ψn(x) is given by

For n = 1, 3, 5, ... ψn(x) =

√
2
a

cos
(nπx

a

)
; if − a

2
≤ x ≤ a

2
= 0 else.

For n = 2, 4, 6, ... ψn(x) =

√
2
a

sin
(nπx

a

)
; if − a

2
≤ x ≤ a

2
= 0 else.

Suppose that the particle is in the ground state (n = 1) of the potential,

(a) Find the probability that the particle is found between x = −a/4 and x = a/4. (5 marks)

(b) What is the expectation value 〈x〉 for position? (3 marks)

(c) What is the expectation value 〈p〉 for momentum? (3 marks)

(d) Now, suppose that the potential well suddenly expands symmetrically to twice its size. Calculate the probability
of finding the particle in the ground state of the new potential well. (14 marks)

Solutions 6

(a) The probability that the particle is found between x = −a/4 and x = a/4 is given by

∫ a/4

−a/4

ψ∗(x)ψ(x)dx =
2
a

∫ a/4

−a/4

cos2
(πx

a

)
dx

=
1
a

∫ a/4

−a/4

1 + cos
(

2πx

a

)
dx

=
1
a

[
x +

a

2π
sin

(
2πx

a

)]a/4

−a/4

=
1
a

[a

2
+

a

π

]

=
1
2

+
1
π

(b) The position expectation value is 〈x〉 is

〈x〉 =
∫ a/2

−a/2

ψ∗(x)xψ(x)dx

=
2
a

∫ a/2

−a/2

x cos2
(πx

a

)
dx

= 0

In evaluating the integral we have used the fact that the integrand is an odd function.



(c) The momentum expectation value is 〈p〉 is

〈p〉 =
∫ a/2

−a/2

ψ∗(x)
(
−i~

d

dx

)
ψ(x)dx

=
2
a

∫ a/2

−a/2

cos
(πx

a

)(
−i~

d

dx

)
cos

(πx

a

)
dx

=
2
a
(i~)

∫ a/2

−a/2

cos
(πx

a

)
sin

(πx

a

) π

a
dx

= 0

In evaluating the integral we have again used the fact that the integrand is an odd function.

(d) The state of the particle before the expansion of the well is |ψ〉 = |ψ(old)
1 〉, where |ψ(old)

1 〉 is the ground state
solution of the infinite-potential well of width a. The position-space wave-function of the ground state is given by

〈x|ψ(old)
1 〉 = ψ

(old)
1 (x) =

√
2
a

cos
(πx

a

)
if

−a

2
< x <

a

2
= 0 otherwise

The width of the well then expands to 2a. We write the new stationary state solutions as |ψ(new)
n 〉. The position-

space wave-function of the ground state can therefore be written as

〈x|ψ(new)
1 〉 = ψ

(new)
1 (x) =

√
2
2a

cos
(πx

2a

)
if − a < x < a

= 0 otherwise

In order to calculate the required probability, we need to write our state in the new basis:

|ψ〉 = |ψ(old)
1 〉 =

∞∑
n=0

cn|ψ(new)
n 〉,

where cn = 〈ψ(new)
n |ψ〉 = 〈ψ(new)

n |ψ(old)
1 〉. The required probability is |c1|2, which we calculate as follows:

c1 = 〈ψ(new)
1 |ψ(old)

1 〉 =
∫ a

−a

ψ
(new)
1 (x)ψ(old)

1 (x)dx

However, the wave-function ψ
(old)
1 (x) is defined only over the range (−a/2) < x < (a/2). Thus we effectively have,

c1 =
∫ a/2

−a/2

ψ
(new)
1 (x)ψ(old)

1 (x)dx

=
∫ a/2

−a/2

√
2
2a

cos
(πx

2a

) √
2
a

cos
(πx

a

)
dx

=
√

2
a

∫ a/2

−a/2

cos
(πx

2a

)
cos

(πx

a

)
dx

=
√

2
2a

∫ a/2

−a/2

[
cos

(πx

2a

)
+ cos

(
3πx

2a

)]
dx

=
√

2
2a

[
2√
2
× 2a

π
+

2√
2
× 2a

3π

]
=

2
π
× 4

3
=

8
3π

Therefore, the required probability is |c1|2 =
(

8
3π

)2


