Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Thomas Robert Malthus

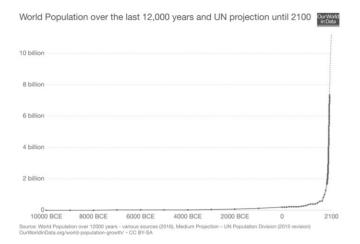
- 1. English cleric and scholar
- 2. 13 February 1766 23 December 1834
- 3. 1798 book "An Essay on the Principle of Population"
- 4. Influenced studies in Population Ecology

13. Human population growth and requirements

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Malthusian growth model


- 1. Population grows in geometric progression, roughly doubling every 25 years: $1 \to 2 \to 4 \to 8 \to 16 \to 32$...
- 2. Food supply increases in arithmetic progression: $1 \to 2 \to 3$ \to 4 \to 5 \to 6 ...
- 3. Thus population tends to overrun food supply.
- 4. This imbalance is corrected by positive checks: vice, misery, famine, war, disease, pestilence, floods and other natural calamities
- 5. The imbalance may also be corrected using preventive checks: foresight, late marriage, celibacy, moral restraint, etc.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

World Population does show exponential growth

(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Doubling time

Doubling time, t_d is defined as the time required to double the population size.

Thus,
$$P(t_d)=2P_0$$

Hence,

$$2P_0 = P_0 e^{kt_d}$$

$$\implies 2 = e^{kt_d}$$

$$\implies ln2 = kt_d$$

$$\implies t_d = \frac{1}{k} ln2$$

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Malthusian growth model

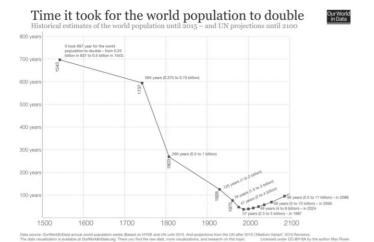
If P(t) denotes the population at time t, we can say

$$\frac{dP}{dt} = kP$$

where k is a positive constant. Upon integrating, we get

$$P(t) = P_0 e^{kt}$$

where P_0 denotes the population at time 0.


Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

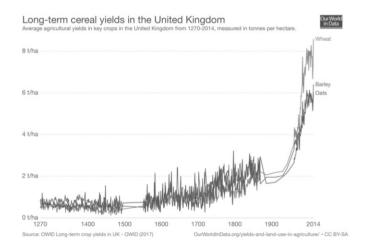
Criticism 1: Population growth is not as suggested

Ecological Principles and Biodiversity for Sustainability

The observed doubling time

(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability


Dr. Ankur Awadhiya, IFS

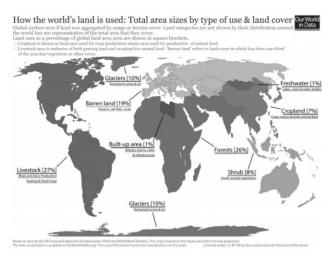
Criticism 2: Agricultural growth is not as suggested

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Exponential increase in yields

(https://ourworldindata.org)

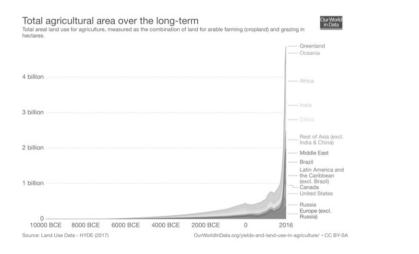

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Criticism 3: Does not incorporate new land that becomes available

Ecological Principles and Biodiversity for Sustainability

World land usage

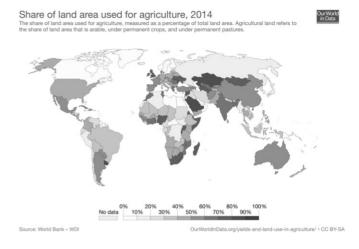


(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Increase in agricultural areas

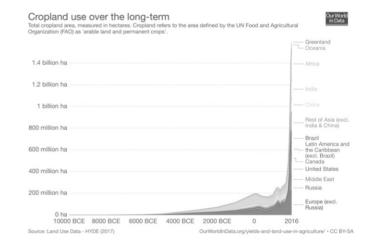


(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

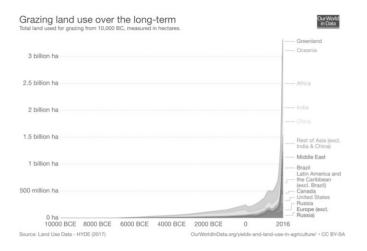
Share of land used for agriculture



(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

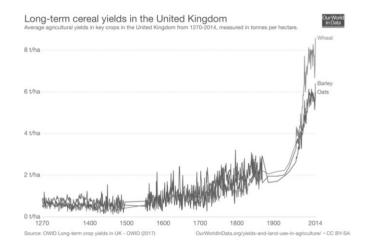
Dr. Ankur Awadhiya, IFS


Increase in cropland areas

(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Increase in grazing areas



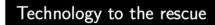
(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Exponential increase in yields

(https://ourworldindata.org)


Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Criticism 4: Neglects role of technology

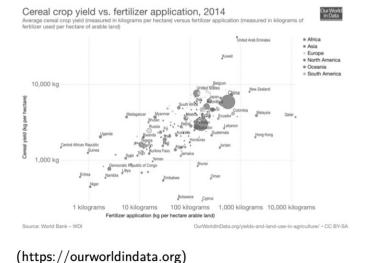
Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

(Inteps.//ourworldmadta.org)

Ecological Principles and Biodiversity for Sustainability

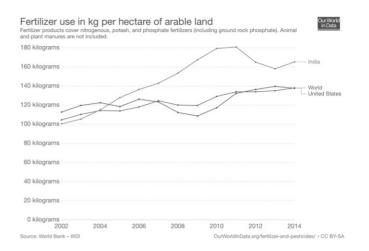
Technology to the rescue



(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

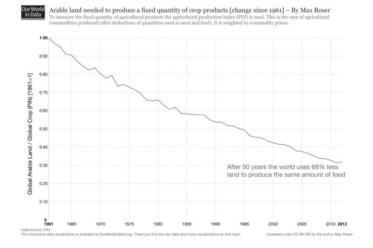
Dr. Ankur Awadhiya, IFS


Increased yields due to fertilisers

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Technology to the rescue



(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Productivity reduces land requirement

(https://ourworldindata.org)

Ecological Principles and Biodiversity for Sustainability

Other criticisms

- 5. Population not related to food supply but to total wealth
- 6. Does not consider population increase due to lowering of death rates
- 7. Preventive checks do not pertain only to moral restraint, e.g. contraceptives
- 8. Positive checks may occur even in low-populated countries, e.g. Japan

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Rate of population growth

$$N_{t+1} = R_0 \times N_t$$

where

 $N_t = \mbox{Population size at generation t}$

 $N_{t+1} = \mathsf{Population}$ size at generation t + 1

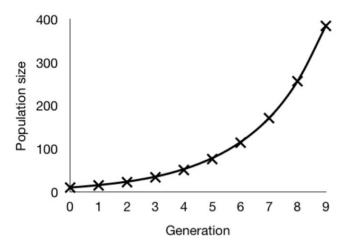
 $R_0=\mbox{Net reproductive rate}=\mbox{Number of female offsprings}$ produced per female per generation

Glimpses from Wildlife Population Ecology

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Condition of constant $R_0=1.5\,$


GENERATION	POPULATION SIZE
0	10
1	15
2	22.5
3	33.75
4	50.625
5	75.9375
6	113.90625
7	170.859375
8	256.2890625
9	384.43359375

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Condition of constant $R_0=1.5\,$

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

The logistic growth equation

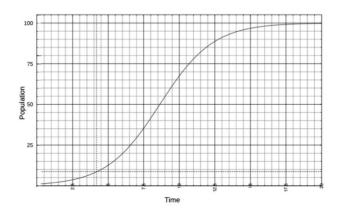
$$\frac{dN}{dt} = rN \times (\frac{K - N}{K})$$

where

 $N={\sf Population}$ size at time t

 $K={\sf Carrying\ capacity\ of\ the\ environment}$

 $r={\sf intrinsic}$ growth rate


Dr. Ankur Awadhiya, IFS

But R_0 is not constant. It varies with population size.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

The logistic growth equation

Ecological Principles and Biodiversity for Sustainability

Some common agents regulating population

- 1. Extrinsic agents
 - a. weather
 - b. predators
 - c. parasites
 - d. diseases
 - e. quantity and quality of food available
 - f. shelter
- 2. Intrinsic agents
 - a. physiological
 - b. behavioural

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

14. Threats to biodiversity and ecology

Thank you

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Threat factors discerned from Ecology

The opposite question to: Why things are found where they are found?

Push factors everywhere, pull factors nowhere.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Threat factors discerned from Ecology: Push factors

- 1 No suitable habitat
 - a. too hot, too cold
 - b. no trees, no food, no nutrients
 - c. completely burnt out
 - d. rich in noxious factors: too polluted
 - e. not suited behaviourally: Habitat selection at play
- 2. Competed out
 - a. invasive species
 - b. too many predators or diseases
- 3. Killed out
 - a. heavy poaching
 - b. too many predators or diseases
- 4. Small-population dynamics
 - a. Allee effect
 - b. stochastic deaths

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Declining population paradigm: Cause of smallness¹

1. No suitable habitat

- 1.1 too hot, too cold
- 1.2 no trees, no food, no nutrients
- 1.3 completely burnt out
- 1.4 rich in noxious factors: too polluted
- 1.5 not suited behaviourally: Habitat selection at play

2. Competed out

- 2.1 invasive species
- 2.2 too many predators or diseases
- 3. Killed out
 - 3.1 heavy poaching
- 4. Small-population dynamics
 - 4.1 Allee effect
 - 4.2 stochastic deaths

Dr. Ankur Awadhiya, IFS

Threat factors discerned from Ecology: Push factors

These can be divided into

- 1. factors pushing a population towards smaller numbers through population dynamics: Called the **Declining population** paradigm.
- 2. factors pushing a small population towards extinction: Called the Small population paradigm.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Small factor paradigm: Impact of smallness²

- 1. No suitable habitat
 - 1.1 too hot, too cold
 - 1.2 no trees, no food, no nutrients
 - 1.3 completely burnt out
 - 1.4 rich in noxious factors: too polluted
 - 1.5 not suited behaviourally: Habitat selection at play
- 2. Competed out
 - 2.1 invasive species
 - 2.2 too many predators or diseases
- 3. Killed out
 - 3.1 heavy poaching
- 4. Small-population dynamics
 - 4.1 Allee effect
 - 4.2 stochastic deaths

¹Caughley, G., 1994. Directions in conservation biology. Journal of animal ecology, pp.215-244.

²Caughley, G., 1994. Directions in conservation biology. Journal of animal ecology, pp.215-244.

Population dynamics and extinction

2 kinds of factors operate at all times:

- 1. deterministic factors (acting at large population sizes)
- 2. stochastic factors (more important when the population sizes are smaller)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Extinction factors at small sizes

Stochastic factors (more important when the population sizes are smaller):

- 1. demographic stochasticity including occurrence of probabilistic events such as reproduction, litter size, sex determination, and death
- 2. environmental variation and fluctuations
- 3. catastrophes such as forest fires and diseases
- 4. genetic processes including loss of heterogeneity and inbreeding depression
- 5. deterministic processes such as density dependent mortality on exceeding the carrying capacity of the habitat
- 6. migration among populations

Extinction factors at large sizes

Deterministic factors (acting at large population sizes):

- 1. birth rate
- 2. death rate
- 3. population structure

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

The factors driving a species towards extinction

can be remembered using the acronym HIPPO:

- 1. Habitat loss
- 2. Invasive species
- 3. Pollution
- 4. human over-Population
- 5. Over-harvesting

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Impact of humans

Sensitivity of the species to human impacts is dependent upon

- 1. adaptability and resilience of the species
- 2. human attention: charismatic species like tigers are more sensitive because humans have high demand for their skin, bones and other parts
- 3. ecological overlap between humans and the species: the greater the overlap, the greater the impact
- 4. home range requirements of the species: species requiring larger home ranges are more sensitive to human impacts

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Estimating the rate of species loss using Biogeography

z varies between 0.15 and 0.35.

Taking ${\sf z}=$ 0.30, for an area A_1

$$S_1 = C \times A_1^{0.30}$$

Let the area decrease by 90%:

$$A_2 = 0.1 \times A_1$$

Then,

$$S_2 = C \times (0.1 \times A_1)^{0.30}$$

How real is the threat? Glimpses from Biogeography

According to the island biogeography model³, species richness, S of an island is given by

$$S = C \times A^z$$

where

A is the size of the island

C, z are constants depending on the set of species and the island

³MacArthur and Wilson 1967

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Estimating the rate of species loss using Biogeography

This gives

$$\frac{S_2}{S_1} = \frac{C \times (0.1 \times A_1)^{0.30}}{C \times A_1^{0.30}}$$

$$\implies \frac{S_2}{S_1} = 0.1^{0.3}$$

$$\implies \frac{S_2}{S_1} = 0.5012 \approx 50\%$$

Thus,
$$S_2=\frac{1}{2}\times S_1$$

Ecological Principles and Biodiversity for Sustainability

So, by reducing area by 90%, the species richness becomes halved.

Estimating the rate of species loss using Biogeography

The rate at which tropical forests are actually decreasing is $\approx 1.8\%$ per annum. With the lowest value of z (0.15), this would translate to an annual loss of 0.27%

The estimated number of species in tropical forests is 10 million.

Thus, annual loss of species from tropical forests is given by

 $10,000,000 \times 0.27 / 100$

= 27,000 species per year

And this is the most conservative estimate!

Similarly, we may estimate the loss from other ecosystems.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Why are some species rarer?

Three reasons:

- 1. habitat selection and evolutionary characteristics: restriction to an uncommon habitat, e.g. species found in desert springs
- 2. limited geographical range, e.g. those species found in a single lake
- 3. low population densities, e.g. because larger animals require more space

Are all species equally susceptible to extinction?

No.

The susceptibility depends on the rarity of the species, the rarer the species, the more its chances of getting extinct.

And rarity is a function of the ecology and evolutionary characteristics of the species.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Four impacts on the habitat

- 1. Habitat degradation
- 2. Habitat fragmentation
- 3. Habitat displacement
- 4. Habitat loss

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Habitat degradation

Habitat degradation is the process by which habitat quality for a given species is diminished.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Potomac river: Eutrophic state

(By Alexandr Trubetskoy Wikimedia curid=19117918)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some causal agents for habitat degradation

1. Contamination

- a. air pollution
- b. water pollution
- c. eutrophication
- d. pesticides and accumulative toxins

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Bioaccumulation

Ecological Principles and Biodiversity for Sustainability

Biomagnification

Concentration of DDD in Clear Lake ecosystem⁴

Water 0.01 ppm \to Planktons 5 ppm \to Fish 40 - 300 ppm \to Piscivorous birds 1600 - 2500 ppm

⁴Carson, R., 2002. Silent spring. Houghton Mifflin Harcourt.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Entanglement

Ecological Principles and Biodiversity for Sustainability Dr. Ankur Awadhiya, IFS

Some causal agents for habitat degradation

- 1. Contamination
- 2. Trash
 - a. ghost nets
 - b. plastics

Ecological Principles and Biodiversity for Sustainability


Dr. Ankur Awadhiya, IFS

Ghost nets

Ecological Principles and Biodiversity for Sustainability

Smothering of sea bed life

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Trash with Tahr

(Ankur Awadhiya 2018 Mukurthi National Park)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Destruction of habitat: Penguins

(Ankur Awadhiya 2018 'Boulders' Table Mountain National Park)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Plastics in rhino dung

(Ankur Awadhiya 2018 Manas Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

Plastics and animal behaviour

(Ankur Awadhiya 2018 Mahabaleshwar)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Forest fire

(Ankur Awadhiya 2017 Kanha Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some causal agents for habitat degradation

- 1. Contamination
- 2. Trash
- 3. Soil erosion
- 4. Fire regimes

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some causal agents for habitat degradation

- 1. Contamination
- 2. Trash
- 3. Soil erosion
- 4. Fire regimes
- 5. Water over-exploitation
- 6. Deforestation

Ecological Principles and Biodiversity for Sustainability

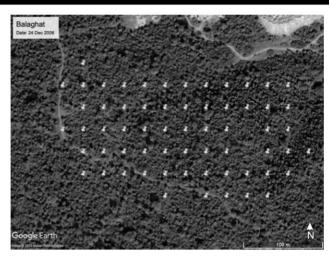
Clearing of forest

(Ankur Awadhiya 2017 Shivalik Range, Uttarakhand)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Balaghat 2018

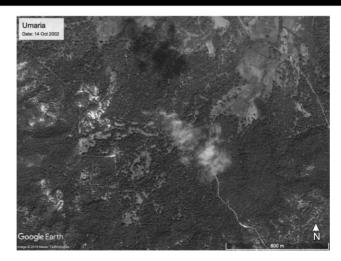


(Ankur and Abhijit Awadhiya, Deforestation in Madhya Pradesh 2000-2018)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Balaghat 2006



(Ankur and Abhijit Awadhiya, Deforestation in Madhya Pradesh 2000-2018)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Umaria 2002

(Ankur and Abhijit Awadhiya, Deforestation in Madhya Pradesh 2000-2018)

Ecological Principles and Biodiversity for Sustainability

Umaria 2018

(Ankur and Abhijit Awadhiya, Deforestation in Madhya Pradesh 2000-2018)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Bhopal 2018

(Ankur and Abhijit Awadhiya, Deforestation in Madhya Pradesh 2000-2018)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Bhopal 2003

(Ankur and Abhijit Awadhiya, Deforestation in Madhya Pradesh 2000-2018)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some causal agents for habitat degradation

- 1. Contamination
- 2. Trash
- 3. Soil erosion
- 4. Fire regimes
- 5. Water over-exploitation
- 6. Deforestation
- 7. Desertification
 - a. over-grazing
 - b. cultivation practices

Ecological Principles and Biodiversity for Sustainability

Desertification and over-grazing

(Ankur Awadhiya 2015 Gujarat)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Habitat loss

Habitat loss occurs when the quality of the habitat is so low that the habitat is no longer usable by a given species.

Some causal agents for habitat degradation

- 1. Contamination
- 2. Trash
- 3. Soil erosion
- 4. Fire regimes
- 5. Water over-exploitation
- 6. Deforestation
- 7. Desertification
- 8. Draining, dredging, damming, etc.
- 9. Over-exploitation of biota
- 10. Introduction of exotic species

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Habitat fragmentation

Fragmentation occurs when a natural landscape is broken up into small parcels of natural ecosystems, isolated from one another in a matrix of lands dominated by human activities.

It involves both loss and isolation of ecosystems.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Why do larger fragments support more species?

- 1. Larger fragments have more diverse environments, so more habitats.
- 2. Larger fragments are more likely to have both common and uncommon species; smaller fragments are more likely to have only common species.
- 3. Smaller fragments have smaller populations, so the chances of getting extinct are greater.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Linear infrastructure

(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability Dr. Ankur Awadhiya, IFS

Some causal agents for habitat fragmentation

- 1. Roads, railways, dams and other structures
 - a. mortality
 - b. physical barrier
 - c. psychological barrier
 - d. access to anthropogenic influence
 - e. access to invasives and exotics
- 2. Diversion of land for agriculture

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Dam

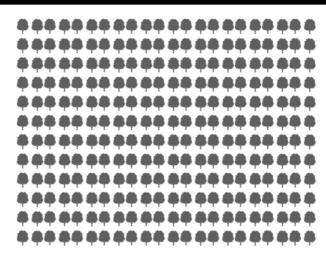
(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

The process of habitat fragmentation and loss

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

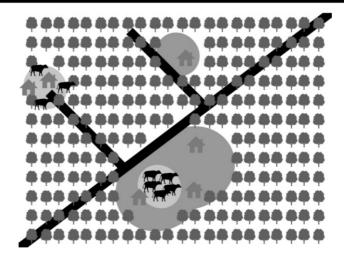

Dissection

(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Original forest



(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Perforation

(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

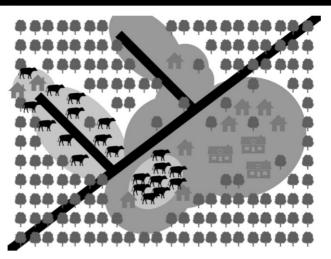
Livestock in the forest

(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

${\sf Fragmentation}$

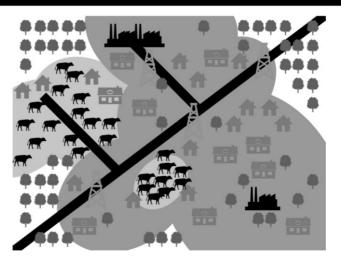


(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Fragmentation



(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

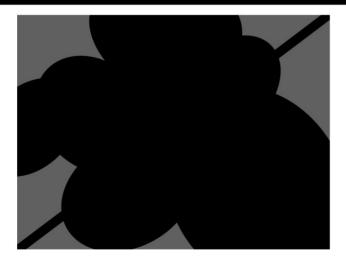
Dr. Ankur Awadhiya, IFS

Attrition

(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

Attrition



(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

After

(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Before

(Ankur Awadhiya 2021 Principles of Wildlife Conservation. Florida and Oxfordshire: CRC Press / Taylor & Francis)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Extremely fragmented habitat

(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability

Habitat displacement

Shifting of wildlife to non-prime / sub-prime habitats e.g. hills or rocky patches.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Dr. Ankur Awadhiya, IFS

Population viability analysis

Population viability is the ability of a population to persist, or to avoid extinction. Thus, population viability analysis is an analysis of the viability of a population.

Extremely fragmented habitat

(Ankur Awadhiya 2018 Mudumalai Tiger Reserve)

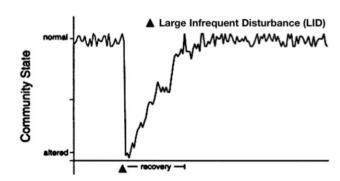
Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Population viability analysis

PVA is a process by which the extinction probability of a single species population is assessed⁵ by integrating data on the life history, demography and genetics of the species with information on the variability of the environment, diseases, stochasticity, etc., by utilising mathematical models and computer simulations in order to predict whether the population will remain viable or go extinct in a decided time frame under various management options⁶.

⁵Hugh P. Possingham, Michael A. McCarthy and David B. Lindenmayer, Population Viability Analysis, In Encyclopedia of Biodiversity (Second Edition), edited by Simon A Levin, Academic Press, Waltham, 2013, Pages 210-219, ISBN 9780123847201, https://doi.org/10.1016/B978-0-12-384719-5.00173-8. ⁶Beissinger, S.R. and McCullough, D.R., 2002. Population viability analysis. University of Chicago Press.


Thank you

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

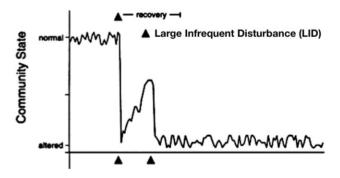
Impact of disturbances

Normal community, single LID ⇒ Recovery

7

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS


15. Case studies – Impacts of oil spills

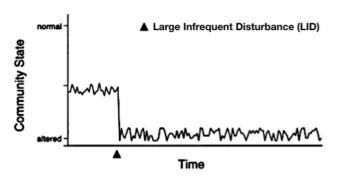
Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Impact of disturbances

Normal community, multiple LID \implies Alterations

8


⁸Paine, R.T., Tegner, M.J. and Johnson, E.A., 1998. Compounded perturbations yield ecological surprises. Ecosystems, 1(6), pp.535-545.

Ecological Principles and Biodiversity for Sustainability

⁷Paine, R.T., Tegner, M.J. and Johnson, E.A., 1998. Compounded perturbations yield ecological surprises. Ecosystems, 1(6), pp.535-545.

Impact of disturbances

Disturbed community, single LID \implies Alterations

9

⁹Paine, R.T., Tegner, M.J. and Johnson, E.A., 1998. Compounded perturbations yield ecological surprises. Ecosystems, 1(6), pp.535-545.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Disturbed community

- 1. diseased
- 2. weed infested
- 3. facing competition from livestock
- 4. pollutants-rich
- 5. facing climatic changes, etc.

Large, Infrequent Disturbances

- 1. fire
- 2. storm
- 3. tsunami
- 4. oil spill
- 5. climatic extreme
- 6. heavy pollution, etc.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

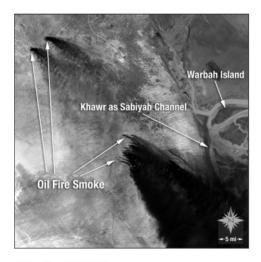
Oil spill

"An oil spill is the release of a liquid petroleum hydrocarbon into the environment."

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability


Location of oil spills

1. Terrestrial: e.g. Kuwaiti oil lakes formed during Iraq's invasion of Kuwait (1990 - 91).

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

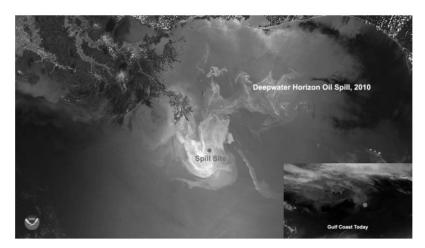
Oil fires in Kuwait

(Credit: NASA)

Ecological Principles and Biodiversity for Sustainability Dr. Ankur Awadhiya, IFS

Oil lake in Kuwait

Ecological Principles and Biodiversity for Sustainability

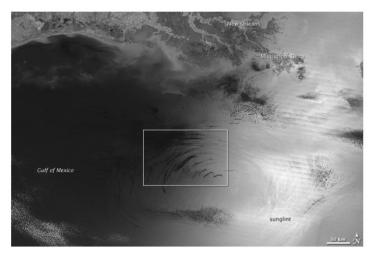

Dr. Ankur Awadhiya, IFS

Location of oil spills

- 1. Terrestrial: e.g. Kuwaiti oil lakes formed during Iraq's invasion of Kuwait (1990 91).
- 2. Marine: e.g. Deepwater Horizon (2010).

Ecological Principles and Biodiversity for Sustainability

Deepwater Horizon oil spill



(Credit: NOAA)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Gulf of Mexico oil seep

(Credit: NASA)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Kinds of oil spills

- 1. Accidental: e.g. Deepwater Horizon incident
- 2. Intentional: e.g. Gulf war oil spill
- 3. Natural: e.g. Oil seeps in Gulf of Mexico

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Hydrocarbon

"A hydrocarbon is an organic compound consisting entirely of hydrogen and carbon."

These form a major chunk of petroleum oil.

Ecological Principles and Biodiversity for Sustainability

Some common hydrocarbons in oil

(Impacts of oil spills on marine ecology, IPIECA 2015)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Dr. Ankur Awadhiya, IFS

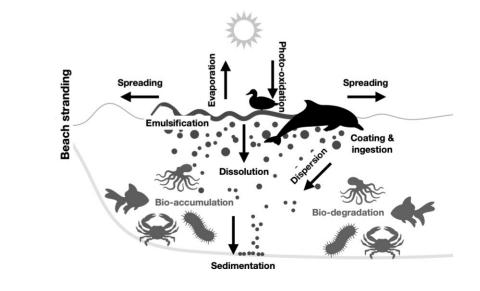
Classification of hydrocarbons: Based on origin

- 1. Petrogenic hydrocarbons: Derived directly from mineral oils.
- 2. Pyrogenic hydrocarbons: Derived from incomplete burning of mineral oils.
- 3. Biogenic hydrocarbons: Derived from biological processes acting on mineral oils.

Classification of hydrocarbons: Group 1 to 5 oils

Based on specific gravity

► Group 1: very low (< 0.8) specific gravity (e.g. kerosene)


▶ Group 5: very high (≥ 1.0) specific gravity (e.g. bitumen)

Useful when discussing the fate and persistence of oil spills.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

The fate of oil in marine ecosystem

Ecological Principles and Biodiversity for Sustainability

Impact of oil spills on the ecosystem

- 1. Upon coating
 - Physical smothering: reduced ability to move, feed, etc., loss of thermoregulation
 - Inhalation of volatile hydrocarbons: toxicity
 - Absorption through skin and mucosa: toxicity
- 2. Dissolved products
 - ► Absorption through skin and food: toxicity

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some terms associated with impacts I

- 1. Vulnerability: Vulnerability describes the likelihood that a resource will be exposed to oil.
- Sensitivity: Sensitivity assumes that the resource is exposed to the oil, and describes the relative effect of that exposure. Thus, a deep water coral may be sensitive but not vulnerable to a surface oil spill, while a rocky shore seaweed may be vulnerable but not sensitive.
- 3. Toxicity: The potential or capacity of a material to have adverse effects on living organisms.
 - a. Acute toxicity: Acute toxicity involves harmful effects in an organism through a single or short-term exposure.
 - b. Chronic toxicity: Chronic toxicity is the ability of a substance or mixture of substances to have harmful effects over an extended period, usually upon repeated or continuous exposure, sometimes lasting for the entire life of the exposed organism.

Factors influencing the impact on organisms

- 1. Seasonality: e.g. breeding season, presence of eggs or juveniles
- 2. Ecological functions of key species: e.g. impact on keystone species like mangroves
- 3. Lifestyle factors: e.g. animals with long lifespan and *k-selected* reproductive strategy are more impacted
- 4. Health and condition: e.g. stressed animals such as diseased or migrating animals are more impacted

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some terms associated with impacts II

- 4. Exposure: The combination of duration of exposure to the chemical and concentration of the chemical.
- 5. Exposure route: The way the organism is exposed to the substance, including ingestion (directly or in food), absorption through the gills or contact with the skin.
- Magnitude: The magnitude of a toxic effect depends on the sensitivity of an organism to the chemicals, but is also a function of both the concentration and duration of exposure to the chemical.
- 7. Lethal effect: A lethal effect results in the death of an organism.
- 8. Sub-lethal effect: A sublethal effect results in a reduction of biological function or health, e.g. its growth, ability to reproduce, or the condition of its skin.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Ecological Principles and Biodiversity for Sustainability

Some terms associated with impacts III

- Bioavailability: Bioavailability is the extent to which a chemical is available for uptake into an organism and, with respect to oil spills, is usually closely related to both the display of toxicity and the rate of biodegradation.
- 10. Bioaccumulation: Bioaccumulation occurs when an organism absorbs a toxic substance into its tissues at a rate greater than that at which the substance is lost.
- 11. Biomagnification: Biomagnification, also known as bioamplification or biological magnification, is the increasing concentration of a substance, such as a toxic chemical, in the tissues of tolerant organisms at successively higher levels in a food chain.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Dr. Ankur Awadhiya, IFS

Impacts on different animals I

- 1. Planktons:
 - Sensitive to exposure.
 - Acute, chronic and sublethal effects.
 - Recover quickly due to short generation times.
- 2. Seabed life:
 - ► Ecologically-significant concentrations of dissolved or dispersed oil from surface slicks rarely reach below 10 metres.
 - Subsea blowouts may have higher potential for seabed impacts in deep water
 - ► Sedimented hydrocarbons may pose risk to bottom dwellers.
- 3. Fish:
 - Acute, chronic and sublethal effects.
 - ► From fisheries perspective, tainting (hydrocarbons, even in very low concentrations, can be tasted or smelt in the meat) is a major concern.
- 4. Marine mammals:

Biomagnification

Concentration of DDD in Clear Lake ecosystem¹⁰

Water 0.01 ppm \to Planktons 5 ppm \to Fish 40 - 300 ppm \to Piscivorous birds 1600 - 2500 ppm

¹⁰Carson, R., 2002. Silent spring. Houghton Mifflin Harcourt.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Impacts on different animals II

- Need to surface periodically for air ⇒ exposure to high concentrations of oil.
- ► Soiling of fur impairs insulation and water repellence.
- ► Cleaning of fur may lead to ingestion.
- ► Smothering of airways may also occur.
- 5. Marine reptiles:
 - Need to surface periodically for air ⇒ exposure to high concentrations of oil.
 - ► Smothering of airways may also occur.
 - Seasonality of nesting and egg laying behaviours may increase magnitude of impact.
- 6. Birds:
 - Physical oiling of their feathers may cause hypothermia and reduced ability to move, feed etc.
 - Ingestion may occur through preening or consumption of contaminated food.
 - ► Transfer of oil to eggs or young may reduce survival.

Impacts on different animals III

- 7. Shoreline and coastal habitats:
 - ► Seaweeds are better protected from oil impacts due to their mucous coating that resists oil.
 - ► Mangroves can be killed by viscous oil that covers their pneumatophores.
 - ▶ Burrowing crabs may be killed when their burrows are penetrated.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Dr. Ankur Awadhiya, IFS

Clean-up operations

1. Contain and scoop: Use booms to contain the spill, and skimmer to collect the oil from the surface.

Reducing the impacts on ecosystem¹¹

- 1. Cleaning: Clean, in the context of an oil spill, may be defined as the return to a level of petroleum hydrocarbons that has no detectable impact on the function of an ecosystem.
- 2. Recovery: Recovery of an ecosystem is characterised by the re-establishment of a biological community in which the plants and animals characteristic of that community are present and functioning normally.

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Boom to protect salmon hatchery after Exxon Valdez spill

(Credit: NOAA)

Ecological Principles and Biodiversity for Sustainability

¹¹Kingston, P.F., 2002. Long-term environmental impact of oil spills. Spill Science & Technology Bulletin, 7(1-2), pp.53-61.

Skimming oil after Deepwater Horizon spill

(Credit: NOAA)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Burning oil after Deepwater Horizon spill

(Credit: NOAA)

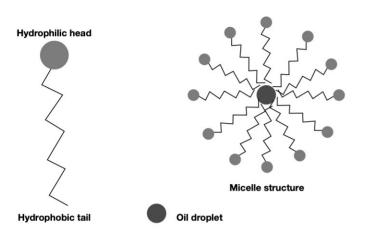
Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Clean-up operations

- 1. Contain and scoop: Use booms to contain the spill, and skimmer to collect the oil from the surface.
- 2. Burn: Burn the released oil in situ.

Ecological Principles and Biodiversity for Sustainability


Dr. Ankur Awadhiya, IFS

Clean-up operations

- 1. Contain and scoop: Use booms to contain the spill, and skimmer to collect the oil from the surface.
- 2. Burn: Burn the released oil in situ.
- 3. Let nature act: When there is little possibility of the oil impacting the ecosystem, it can be left as such for nature to take care of it.
- 4. Use biological agents and fertilisers: The natural action can be speeded up by the addition of micro-organisms, or by the action of nitrogen and phosphorus that promote their growth.
- 5. Disperse: Use chemical dispersants to break oil into droplets, facilitating natural biodegradation.

Ecological Principles and Biodiversity for Sustainability

Action of dispersants

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Strategies to protect ecosystems

- 1. Avoid setting up oil rigs in especially vulnerable spots.
- 2. Prevent spills with better technologies.
- 3. Develop models to anticipate spread.
- 4. Maintain rapid response teams and technologies.
- 5. Utilise studies on long-term impacts and mitigation options.

Dispersing oil after Deepwater Horizon spill

(Credit: US Air Force Wikimedia curid=10277175)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Thank you

16. Case study – Impact of plastics on Ecology and Biodiversity

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Some plastic items

(Wikimedia file: Plastic_household_items.jpg)

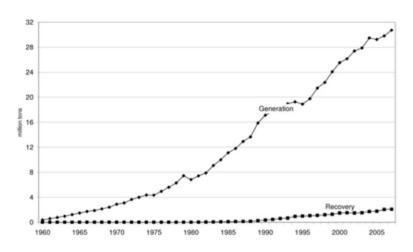
Ecological Principles and Biodiversity for Sustainability Dr. Ankur Awadhiya, IFS

Plastic

"a synthetic material made from a wide range of organic polymers such as polyethylene, PVC, nylon, etc., that can be moulded into shape while soft, and then set into a rigid or slightly elastic form¹²."

¹²Oxford Dictionary of English

Ecological Principles and Biodiversity for Sustainability


Dr. Ankur Awadhiya, IFS

A short history of plastics¹³

- 1. 1600 B.C.: Mesoamericans process natural rubber into a plastic
- 2. 19th century: polystyrene and polyvinyl chloride invented
- 3. 1909: Bakelite used in commercial products
- 4. 1926: PVC commercialised
- 5. 1933: Saran invented
- 6. 1937: Polyurethane foam invented
- 7. 1938: Teflon invented
- 8. 1939: Nylon and neoprene invented
- 9. 1941: PET / polyester invented
- 10. World War 2: Metals become scarce, plastics widely manufactured to replace them
- 11. 1951: HDPE and polypropylene invented
- 12. 1954: Styrofoam invented
- 13. 1979: Plastic production in the US exceeds steel production ¹³Whitacre, D.M. ed., 2016. Reviews of environmental contamination and toxicology. Springer.

Ecological Principles and Biodiversity for Sustainability

Plastic production is increasing @5% p.a.

(Source: UNEP and EPA)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Fate of marine plastics^{14, 15}

- 1. 15% float on surface
- 2. 15% wash ashore
- 3. 70% sink to ocean bottom

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Where does all this plastic go?

- 1. Reused and recycled: a small fraction
- 2. Burnt: releases dioxins and CO₂
- 3. Landfills: and we're running short of space!
- 4. Environment: both terrestrial and (ultimately) marine

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Floating debris

(Source: Randy Olson / National Geographic)

Ecological Principles and Biodiversity for Sustainability

 $^{^{14}\}mbox{Barnes}$ KA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans Royal Soc Lond B: Biol Sci 364(1526): 1985 - 1998

 $^{^{15}}$ UNEP (2001) Marine litter - trash that kills, United Nations Environment Programme

Washed ashore

(Source: Shawn Miller / National Geographic)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Size classification of plastic debris

- 1. Macrodebris: > 20 mm in size
 Ghost nets are the main concern.
- 2. Mesodebris: 5 20 mm in size

 Dominated by 'nurdles': resin granules that are intermediates in plastic production.
- Microdebris: < 5 mm in size
 <p>Formed through fragmentation of macro- or meso- debris.
 Also consist of plastic scrubber particles as found in face wash and other cosmetic products.

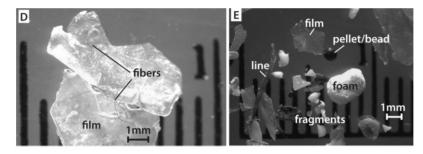
On seabed

(Source: David Jones / National Geographic)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Production of smaller fragments


Synthetic polymers with stabilisers, fillers, extenders and other additives

 $h\nu$, O_2 , microbes and worms

light absorption, photolytic reaction, formation of radicals, enzymatic degradation

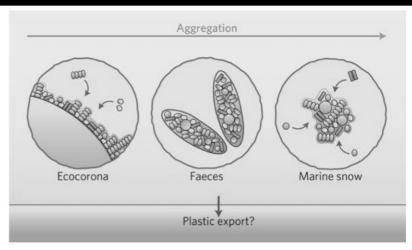
Oxidation and scission reactions causing discolouration, loss of mechanical integrity, strength and impact properties

Decomposing debris

(Baldwin, A.K., Corsi, S.R. and Mason, S.A., 2016. Plastic debris in 29 Great Lakes tributaries: relations to watershed attributes and hydrology. Environmental science & technology, 50(19), pp.10377-10385.)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

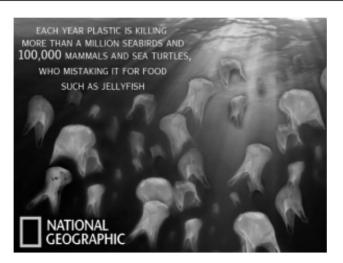

How does this impact wildlife?¹⁶

1. Ingestion

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Aggregation of smaller particles



(Galloway, T.S., Cole, M. and Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature ecology & evolution, 1(5), p.0116.)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

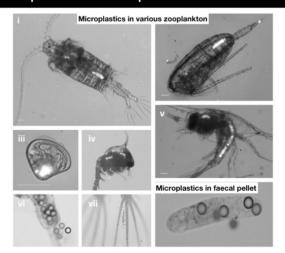
Ingestion

(Source: National Geographic)

Ecological Principles and Biodiversity for Sustainability

¹⁶Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions, Montreal, Technical Series No. 67, 61 pages.

Ingestion

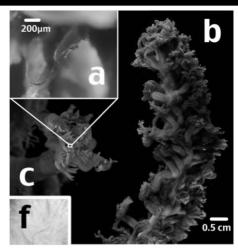


(Source: Smithsonian Ocean Portal)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Microplastics in zooplanktons and faecal pellets



(Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J. and Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environmental science & technology, 47(12),

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Blue microfibre from the mouth area of a sea pen polyp

(Taylor, M.L., Gwinnett, C., Robinson, L.F. and Woodall, L.C., 2016. Plastic microfibre ingestion by deep-sea organisms. Scientific reports, 6, p.33997.)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Influence on bottom dwellers and filter feeders

(Galloway, T.S., Cole, M. and Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature ecology & evolution, 1(5), p.0116.)

Ecological Principles and Biodiversity for Sustainability

How does this impact wildlife?¹⁷

- 1. Ingestion
- 2. Entanglement, even smothering

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Entanglement

(Source: De Wolf S (2008) Zeehond Met Zwerfvuil. www.salkodewolf.nl)

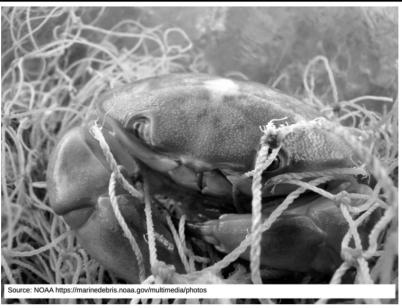
Ecological Principles and Biodiversity for Sustainability Dr. Ankur Awadhiya, IFS

Entanglement

(Source: Jordi Chias / National Geographic)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS


Entanglement

Ecological Principles and Biodiversity for Sustainability

¹⁷Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions, Montreal, Technical Series No. 67, 61 pages.

Ghost nets

Ecological Principles and Biodiversity for Sustainability

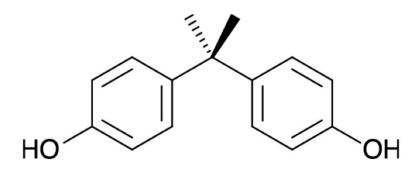
Dr. Ankur Awadhiya, IFS

How does this impact wildlife?¹⁸

- 1. Ingestion
- 2. Entanglement, even smothering
- 3. Persistent, bio-accumulative, toxic substances

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS


Smothering of sea bed life

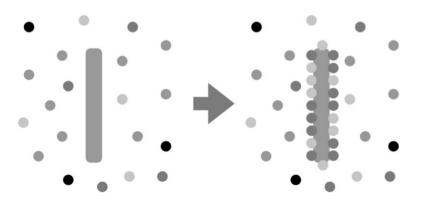
Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Bisphenol-A: Endocrine disruptor

Ecological Principles and Biodiversity for Sustainability

¹⁸Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions, Montreal, Technical Series No. 67, 61 pages.


Brominated flame retardants: Bio-accumulative toxins

(Whitacre, D.M. ed., 2016. Reviews of environmental contamination and toxicology. Springer.)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Accumulation and concentration of hydrophobic toxins

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

How does this impact wildlife?¹⁹

- 1. Ingestion
- 2. Entanglement, even smothering
- 3. Persistent, bio-accumulative, toxic substances
- 4. Accumulation and concentration of hydrophobic toxins

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

How does this impact wildlife?²⁰

- 1. Ingestion
- 2. Entanglement, even smothering
- 3. Persistent, bio-accumulative, toxic substances
- 4. Accumulation and concentration of hydrophobic toxins
- 5. Potential to alter habitats and behaviours

¹⁹Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions, Montreal, Technical Series No. 67, 61 pages.

²⁰Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions, Montreal, Technical Series No. 67, 61 pages.

Hermit crab

(Source: Shawn Miller / National Geographic)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Hyenas

(Source: Brian Lehmann / National Geographic)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Sea horse

(Source: Justin Hofman / National Geographic)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Destruction of habitat: Penguins

(Ankur Awadhiya 2018 'Boulders' Table Mountain National Park)

Ecological Principles and Biodiversity for Sustainability

Trash with Tahr

(Ankur Awadhiya 2018 Mukurthi National Park)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Plastics and animal behaviour

(Ankur Awadhiya 2018 Mahabaleshwar)

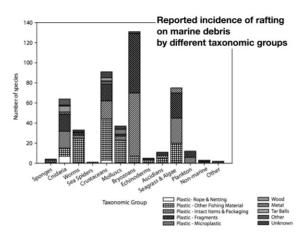
Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Plastics in rhino dung

(Ankur Awadhiya 2018 Manas Tiger Reserve)

Ecological Principles and Biodiversity for Sustainability


Dr. Ankur Awadhiya, IFS

How does this impact wildlife?²¹

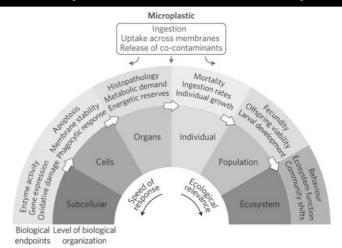
- 1. Ingestion
- 2. Entanglement, even smothering
- 3. Persistent, bio-accumulative, toxic substances
- 4. Accumulation and concentration of hydrophobic toxins
- 5. Potential to alter habitats and behaviours
- 6. Dispersal, including transport of invasive species

²¹Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions, Montreal, Technical Series No. 67, 61 pages.

Rafting of animals on marine debris

(Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel - GEF (2012). Impacts of Marine Debris on Biodiversity: Current Status and Potential

Ecological Principles and Biodiversity for Sustainability


Dr. Ankur Awadhiya, IFS

Dr. Ankur Awadhiya, IFS

How can we help?

1. Reduce, reuse, recycle

Even microplastics can influence the complete hierarchy

(Galloway, T.S., Cole, M. and Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature ecology & evolution, 1(5), p.0116.)

Ecological Principles and Biodiversity for Sustainability

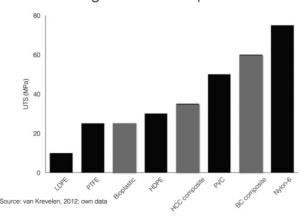
Dr. Ankur Awadhiya, IFS

Plastic recycling

(Source: Randy Olson / National Geographic)

Ecological Principles and Biodiversity for Sustainability

How can we help?

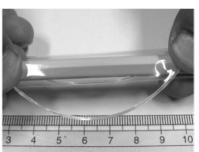

- 1. Reduce, reuse, recycle
- 2. Lifestyle changes: e.g. glasses in place of straws
- 3. Alternative materials: Bioplastics

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Bioplastic material strength

Strength of common plastics


(Ankur Awadhiya 2014 Studies in Agarose-based bioplastic material)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Bioplastic material

(Ankur Awadhiya 2014 Studies in Agarose-based bioplastic material)

Ecological Principles and Biodiversity for Sustainability

Dr. Ankur Awadhiya, IFS

Thank you

Ecological Principles and Biodiversity for Sustainability