Chapter 5

Ordinary Differential Equations

5.1 Linear and non-linear equations

Assuming x and y to be independent and dependent variable, respectively, a linear differential equation of order n is given by

$$
\begin{equation*}
a_{0} y+a_{1} \frac{d y}{d x}+a_{2} \frac{d^{2} y}{d x^{2}}+a_{3} \frac{d^{3} y}{d x^{3}}+\cdots+a_{n} \frac{d^{n} y}{d x^{n}}=b \tag{5.1}
\end{equation*}
$$

where a 's and b are functions of x (or constants). Some examples of linear equations are,

$$
\left.\begin{array}{r}
x y^{\prime}+x^{2} y=e^{x},\left(\begin{array}{ll}
\text { order } & 1
\end{array}\right) \tag{5.2}\\
x^{3} y^{\prime \prime}+e^{x} y^{\prime}+\ln x y=\cos x,(\text { order } 2
\end{array}\right),
$$

Note that, in each of the above equation, dependent variable y and all its derivative occur linearly. The order of the differential equation is decided according to the order of the highest derivative included in the equation. General solution of a linear differential equation of order n has n independent arbitrary constants and we can get a particular solution by assigning particular values to the constants, based on boundary condition or initial condition.

Some examples of the non-linear equations are,

$$
\begin{array}{r}
y^{\prime}-\ln y=0,\left(\begin{array}{l}
\text { order }
\end{array}\right) \tag{5.3}\\
x^{3} y^{\prime \prime}+y^{\prime}-y^{3}=\sin x,(\text { order } 2) \\
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime 2}+x^{2} y=2 \sin y(\text { order } 3) .
\end{array}
$$

Note that, in each of the above equation, either the dependent variable y or some of its derivative does not occur linearly.

5.2 First order differential equations

Differential equations of first order contain only first derivative of y, i.e., y^{\prime}. We are going to discuss different types of first order equations in this section.

5.2.1 Separable equations (optional)

Separable equations are of the form $y^{\prime}=f(x) / g(y)$, such that all the terms containing y can be written on one side of the equation and all the terms containing x can be written on the other,

$$
\begin{equation*}
g(y) d y=f(x) d x \tag{5.4}
\end{equation*}
$$

Note that, we can solve linear, as well as non-linear equations using this method.

Example 1: Solve $x y^{\prime}=y$, given boundary condition $y=3$, when $x=2$.
We can write,

$$
\int \frac{d y}{y}=\int \frac{d x}{x} \Rightarrow \ln (y)=\ln (a x) \Rightarrow y=a x .
$$

Using the boundary condition, we get $3 / 2$.
Example 2: Solve $x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0$, given boundary condition $y=0.5$, when $x=0.5$.

We can write,

$$
\int \frac{y d y}{\sqrt{1-y^{2}}}=\int \frac{-x d x}{\sqrt{1-x^{2}}}
$$

Let us put $1-y^{2}=u^{2}$ and $1-x^{2}=v^{2}$, such that the above equation is converted to

$$
-\int d u=\int d v \Rightarrow\left(1-y^{2}\right)^{1 / 2}+\left(1-x^{2}\right)^{1 / 2}=c,
$$

where $c=\sqrt{3}$.

Example 3: Solve $y^{\prime} \sin x=y \ln y$, given boundary condition $y=e$, when $x=\pi / 3$. We can write,

$$
\int \frac{d y}{y \ln y}=\int \frac{d x}{\sin x} \Rightarrow \int \frac{d y}{y \ln y}=\int \csc x d x .
$$

Left hand side is easy to integrate, if we substitute $\ln y=u$, such that,

$$
\int \frac{d y}{y \ln y}=\int \frac{d u}{u}=\ln u=\ln \ln y .
$$

In order to integrate the right hand side, we multiply and divide by $(\csc x-\cot x)$, and substitute $(\csc x-\cot x)=v$, such that,

$$
\int \csc x d x=\int \frac{\csc x(\csc x-\cot x)}{(\csc x-\cot x)} d x=\int \frac{d v}{v}=\ln v=\ln (\csc x-\cot x) .
$$

Using the boundary condition, the answer is $\ln y=c(\csc x-\cot x)$, where $c=\sqrt{3}$.

5.2.2 Exact equations

Say we have to solve a first order differential equation of the form,

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0 . \tag{5.5}
\end{equation*}
$$

We know that, if the above expression is an exact differential, then we can define a function $F(x, y)$, such that $P=\partial F / \partial x$ and $Q=\partial F / \partial y .{ }^{1}$ Thus, we can write

$$
\begin{equation*}
P d x+Q d y=d F=0 \Rightarrow F(x, y)=c . \tag{5.6}
\end{equation*}
$$

Often, an inexact differential can be converted to an exact equation by multiplying it by an appropriate integrating factor. For example, $x d y-y d x=0$ is not an exact differential, because $P=-y, Q=x$ and $\partial P / \partial y \neq \partial Q / \partial x$. But we can make it exact by dividing it with x^{2} and thus, $1 / x^{2}$ is the integrating factor. Let us verify this,

$$
\frac{x d y-y d x}{x^{2}}=0 \Rightarrow \frac{1}{x} d y-\frac{y}{x^{2}} d x=0 \Rightarrow P_{1}(x, y)=-\frac{y}{x^{2}} \quad \& \quad Q_{1}(x, y)=\frac{1}{x} .
$$

Now, we satisfy the condition $\partial P_{1} / \partial y=\partial Q_{1} / \partial x=-1 / x^{2}$.
In general, by multiplying the given inexact equation with the integrating factor $U(x, y)$, we get an equation of the form $\underbrace{U(x, y) P(x, y)}_{P_{1}(x, y)} d x+\underbrace{U(x, y) Q(x, y)}_{Q_{1}(x, y)} d y=0$, which is an exact equation, i.e., $\frac{\partial P_{1}(x, y)}{\partial y}=\frac{\partial Q_{1}(x, y)}{\partial x}$. However, it might not be a trivial exercise to find the integrating factor by inspection. We will learn a few tricks to do this via some examples.

Example 1: Solve $\left(3 x^{2} y^{3}-5 x^{4}\right) d x+\left(y+3 x^{3} y^{2}\right) d y=0$
Since $P(x, y)=3 x^{2} y^{3}-5 x^{4}$ and $Q(x, y)=y+3 x^{3} y^{2}$, you can easily verify that, $\partial P / \partial y=\partial Q / \partial x=9 x^{2} y^{2}$ and thus, this is an exact equation. Now, we have to find a function $F(x, y)$, such that $P=\partial F / \partial x$ and $Q=\partial F / \partial y$. We can write,

$$
F(x, y)=\int P(x, y) d x=\int\left(3 x^{2} y^{3}-5 x^{4}\right) d x=x^{3} y^{3}-x^{5}+f(y) .
$$

Thus, we have to find $f(y)$ to get the solution. Using the other equation, we can write,

$$
y+3 x^{3} y^{2}=\frac{\partial F}{\partial y}=3 x^{3} y^{2}+f^{\prime}(y) \Rightarrow f(y)=\frac{y^{2}}{2}+c_{1} .
$$

Thus, $F(x, y)=x^{3} y^{3}-x^{5}+\frac{y^{2}}{2}+c_{1}$ and the general solution of the given differential equation is

$$
F(x, y)=c_{2} \Rightarrow x^{3} y^{3}-x^{5}+\frac{y^{2}}{2}=c
$$

where the constant c replaces both c_{1} and c_{2}. You should differentiate the answer

[^0]and check whether you get the equation given in the question.
Example 2: Solve $\left(2 x e^{3 y}+e^{x}\right) d x+\left(3 x^{2} e^{3 y}-y^{2}\right) d y=0$
Since $P(x, y)=\left(2 x e^{3 y}+e^{x}\right)$ and $Q(x, y)=\left(3 x^{2} e^{3 y}-y^{2}\right)$, you can easily verify that $\partial P / \partial y=\partial Q / \partial x=6 x e^{3 y}$ and thus, this is an exact equation. Now, we have to find a function $F(x, y)$, such that $P=\partial F / \partial x$ and $Q=\partial F / \partial y$. We can write,
$$
F(x, y)=\int P(x, y) d x=\int\left(2 x e^{3 y}+e^{x}\right) d x=x^{2} e^{3 y}+e^{x}+f(y) .
$$

Thus, we have to find $f(y)$ to get the solution. Using the other equation, we can write,

$$
3 x^{2} e^{3 y}-y^{2}=\frac{\partial F}{\partial y}=3 x^{2} e^{3 y}+f^{\prime}(y) \Rightarrow f(y)=\frac{y^{3}}{3}+c_{1}
$$

Thus, $F(x, y)=x^{2} e^{3 y}+e^{x}-y^{3} / 3+c_{1}$ and the general solution for the given differential equation is

$$
F(x, y)=c_{2} \Rightarrow x^{2} e^{3 y}+e^{x}-y^{3} / 3=c
$$

where the constant c replaces both c_{1} and c_{2}.
Example 3: Solve $(x-y) d y+(y+x+1) d x=0$
Since $P(x, y)=y+x+1$ and $Q(x, y)=x-y$, you can easily verify that $\partial P / \partial y=$ $\partial Q / \partial x=1$, and thus, this is an exact equation. Now, we have to find a function $F(x, y)$, such that $P=\partial F / \partial x$ and $Q=\partial F / \partial y$. We can write,

$$
F(x, y)=\int P(x, y) d x=\int(y+x+1) d x=x y+\frac{x^{2}}{2}+x+f(y) .
$$

Thus, we have to find $f(y)$ to get the solution. Using the other equation, we can write,

$$
x-y=\frac{\partial F}{\partial y}=x+f^{\prime}(y) \Rightarrow f(y)=-\frac{y^{2}}{2}+c_{1}
$$

Thus, $F(x, y)=x y+x^{2} / 2+x-y^{2} / 2+c_{1}$ and the general solution for the given differential equation is

$$
F(x, y)=c_{2} \Rightarrow x y+\frac{x^{2}}{2}+x-\frac{y^{2}}{2}=c
$$

where the constant c replaces both c_{1} and c_{2}.
Example 4: $\operatorname{Solve}\left(y^{2}+3 x y^{3}\right) d x+(1-x y) d y=0$.
Since $P(x, y)=y^{2}+3 x y^{3}$ and $\partial P / \partial y=2 y+9 x y^{2} ; Q(x, y)=1-x y$ and $\partial P / \partial x=-y$, the equation is not an exact equation. We are going to use an integrating factor
$U(x, y)=x^{m} y^{n}$. Then, the above equation is converted to

$$
\left(x^{m} y^{n+2}+3 x^{m+1} y^{n+3}\right) d x+\left(x^{m} y^{n}-x^{m+1} y^{n+1}\right) d y=0 .
$$

For the above equation to be exact, we must have,

$$
(n+2) x^{m} y^{n+1}+3(n+3) x^{m+1} y^{n+2}=m x^{m-1} y^{n}-(m+1) x^{m} y^{n+1} .
$$

Rearranging, we can write,

$$
[(n+2)+(m+1)] x^{m} y^{n+1}+3(n+3) x^{m+1} y^{n+2}-m x^{m-1} y^{n}=0 .
$$

Since the right hand side is zero, every coefficient must be equal to zero,

$$
\begin{array}{r}
(n+2)+(m+1)=0, \\
(n+3)=0, \\
m=0 .
\end{array}
$$

Thus, the solution is $m=0$ and $n=-3$ and the integrating factor is $U(x, y)=y^{-3}$. Given equation is converted to,

$$
\underbrace{\frac{y^{2}+3 x y^{3}}{y^{3}}}_{P_{1}(x, y)} d x+\underbrace{\frac{1-x y}{y^{3}}}_{Q_{1}(x, y)} d y=0 .
$$

We can easily verify that the above equation is exact, $\partial P_{1} / \partial y=\partial Q_{1} / \partial x=-1 / y^{2}$. Now, we have to find a function $F(x, y)$, such that $P_{1}=\partial F / \partial x$ and $Q_{1}=\partial F / \partial y$. We can write,

$$
F(x, y)=\int P_{1}(x, y) d x=\int\left(\frac{1}{y}+3 x\right) d x=\frac{x}{y}+\frac{3 x^{2}}{2}+f(y) .
$$

Thus, we have to find $f(y)$ to get the solution. Using the other equation, we can write,

$$
\frac{1}{y^{3}}-\frac{x}{y^{2}}=\frac{\partial F}{\partial y}=-\frac{x}{y^{2}}+f^{\prime}(y) \Rightarrow f(y)=-\frac{1}{2 y^{2}}+c_{1}
$$

Thus, $F(x, y)=x / y+3 x^{2} / 2-1 / 2 y^{2}+c_{1}$ and the general solution for the given differential equation is

$$
F(x, y)=c_{2} \Rightarrow \frac{x}{y}+\frac{3 x^{2}}{2}-\frac{1}{2 y^{2}}=c
$$

where the constant c replaces both c_{1} and c_{2}.

Example 5: Solve $\left(3 x y-y^{2}\right) d x+x(x-y) d y=0$.
Since $P(x, y)=\left(3 x y-y^{2}\right)$ and $\partial P / \partial y=3 x-2 y ; Q(x, y)=x(x-y)$ and $\partial Q / \partial x=$
$2 x-y$, the given equation is not an exact equation. We further see that,

$$
\frac{1}{Q}\left[\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right]=\frac{1}{x}=f(x)
$$

When such condition (left hand side is a function of x only) is satisfied, I claim that the integrating factor is $U(x, y)=U(x)=e^{\int f(x) d x}=e^{I}$ (see problem set). In this particular case, the integrating factor is,

$$
\begin{equation*}
U(x)=e^{\int d x / x}=e^{\ln x}=x . \tag{5.7}
\end{equation*}
$$

Multiplying the given equation with the integrating factor, we obtain,

$$
\begin{equation*}
\underbrace{\left(3 x^{2} y-y^{2} x\right)}_{P_{1}(x, y)} d x+\underbrace{\left(x^{3}-x^{2} y\right)}_{Q_{1}(x, y)} d y=0 . \tag{5.8}
\end{equation*}
$$

We can verify that, the above equation is exact as $\partial P_{1} / \partial y=\partial Q_{1} / \partial x=\left(3 x^{2}-2 x y\right)$. Now, we have to find a function $F(x, y)$, such that $P_{1}=\partial F / \partial x$ and $Q_{1}=\partial F / \partial y$. We can write,

$$
F(x, y)=\int P_{1}(x, y) d x=\int\left(3 x^{2} y-y^{2} x\right) d x=x^{3} y-\frac{y^{2} x^{2}}{2}+f(y) .
$$

Thus, we have to find $f(y)$ to get the solution. Using the other equation, we can write,

$$
x^{3}-x^{2} y=\frac{\partial F}{\partial y}=x^{3}-x^{2} y+f^{\prime}(y) \Rightarrow f(y)=c_{1}
$$

Thus, $F(x, y)=x^{3} y-\frac{y^{2} x^{2}}{2}+c_{1}$ and the general solution for the given differential equation is

$$
F(x, y)=c_{2} \Rightarrow x^{3} y-\frac{y^{2} x^{2}}{2}=c
$$

where the constant c replaces both c_{1} and c_{2}.

5.2.3 Homogeneous equations (optional)

A first order differential equation of the form

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0, \tag{5.9}
\end{equation*}
$$

is homogeneous if both P and Q are homogeneous functions of the same degree. ${ }^{2}$ Note that, a $n^{\text {th }}$ degree of homogeneous function of x and y can be expressed as

[^1]$x^{n} f(y / x) .{ }^{3}$ Since P and Q are homogeneous functions of same degree, the factor x^{n} gets canceled and we can write,
\[

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)}=f\left(\frac{y}{x}\right) . \tag{5.10}
\end{equation*}
$$

\]

Thus, a homogeneous can always be expressed in the form of $y^{\prime}=f(y / x)$. Now, we can solve this equation by substituting $y=x v$, which gives us a separable equation in x and $v .{ }^{4}$ Some examples are given below.

Example 1: Solve $x^{2} d y-\left(3 y^{2}+x y\right) d x=0$.
$Q(x, y)=x^{2}$ and $P(x, y)=-\left(3 y^{2}+x y\right)=-x^{2}\left(\frac{3 y^{2}}{x^{2}}+\frac{y}{x}\right)$ are homogeneous functions of degree 2 . We can write,

$$
\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)}=\frac{3 y^{2}}{x^{2}}+\frac{y}{x}=f\left(\frac{y}{x}\right) .
$$

In order to solve the above equation, we substitute, $y=x v$ and get a separable equation in x and v,

$$
v+x \frac{d v}{d x}=3 v^{2}+v \Rightarrow \frac{d v}{3 v^{2}}=\frac{d x}{x} .
$$

Integrating both sides, we get

$$
-\frac{1}{3 v}=\ln |x|+\ln |c| \Rightarrow \frac{x}{y}=-3 \ln |c x| \Rightarrow y=\frac{-x}{3 \ln |x c|}
$$

In order to verify, you can differentiate the last equation and check whether you get the differential equation given in the question.

Example 2: Solve $x^{2} d y+\left(y^{2}-x y\right) d x=0$.
$Q(x, y)=x^{2}$ and $P(x, y)=y^{2}-x y=x^{2}\left(\frac{y^{2}}{x^{2}}-\frac{y}{x}\right)$ are homogeneous functions of degree 2 . We can write,

$$
\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)}=\frac{y}{x}-\frac{y^{2}}{x^{2}}=f\left(\frac{y}{x}\right) .
$$

In order to solve the above equation, we substitute, $y=x v$ and get a separable equation in x and v,

$$
v+x \frac{d v}{d x}=v-v^{2} \Rightarrow \frac{-d v}{v^{2}}=\frac{d x}{x} .
$$

[^2]Integrating both sides, we get

$$
\begin{equation*}
\frac{1}{v}=\ln |x|+\ln |c| \Rightarrow \frac{x}{y}=\ln |c x| \Rightarrow y=\frac{x}{\ln |c x|} \tag{5.11}
\end{equation*}
$$

Example 3: Solve $\left(y^{2}-x y\right) d x+\left(x^{2}+x y\right) d y=0$.
$P(x, y)=\left(y^{2}-x y\right)=x^{2}\left(y^{2} / x^{2}-y / x\right)$ and $Q(x, y)=\left(x^{2}+x y\right)=x^{2}(1+y / x)$ are homogeneous functions of degree 2 . We can write,

$$
\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)}=\frac{x^{2}\left(y / x-y^{2} / x^{2}\right)}{x^{2}(1+y / x)}=\frac{\left(y / x-y^{2} / x^{2}\right)}{(1+y / x)}=f\left(\frac{y}{x}\right) .
$$

In order to solve the above equation, we substitute, $y=x v$ and get a separable equation in x and v,

$$
v+x \frac{d v}{d x}=\frac{v-v^{2}}{1+v} \Rightarrow x \frac{d v}{d x}=\frac{-2 v^{2}}{1+v} \Rightarrow\left[-\frac{1}{v^{2}}-\frac{1}{v}\right] d v=2 \frac{d x}{x} .
$$

Integrating both sides, we get

$$
\frac{1}{v}-\ln |v|=\ln \left|c x^{2}\right| \Rightarrow \frac{x}{y}=\ln |c x y| \Rightarrow e^{x / y}=c x y .
$$

5.2.4 Linear first order equations

A linear first order equation can be written in the form of

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x), \tag{5.12}
\end{equation*}
$$

where P and Q are functions of x (or can be constants). If $Q=0$, then we can easily separate the variables and write,

$$
\begin{equation*}
\frac{d y}{y}=-P d x \Rightarrow \ln y=-\int P d x+c . \tag{5.13}
\end{equation*}
$$

Assuming $I=\int P d x$ (equivalently, $d I / d x=P$), we can write the solution in the form

$$
\begin{equation*}
y=c e^{-I} . \tag{5.14}
\end{equation*}
$$

Now, let us solve for non-zero Q. In order to do this, first let us calculate the first derivative of $y e^{I}$:

$$
\begin{equation*}
\frac{d}{d x}\left(y e^{I}\right)=y^{\prime} e^{I}+y e^{I} \frac{d I}{d x}=y^{\prime} e^{I}+y e^{I} P=e^{I}\left(y^{\prime}+y P\right)=e^{I} Q . \tag{5.15}
\end{equation*}
$$

Since both e^{I} and Q are function of x only, we can integrate to get, ${ }^{5}$

$$
\begin{equation*}
y e^{I}=\int e^{I} Q d x+c \Rightarrow y=\underbrace{e^{-I} \int e^{I} Q d x}_{y_{p}}+\underbrace{e^{-I} c}_{y_{c}}, \text { where } I=\int P d x \text {. } \tag{5.16}
\end{equation*}
$$

[^3]Note that, we have only one arbitrary constant, as expected for a linear first order equation. Also, y_{c} is the solution of Eq. 5.12 with $Q=0$ and y_{p} is known as the particular solution. ${ }^{67}$ Some examples are given below.

Example 1: Solve $y^{\prime}-\frac{y}{x}=1$.
Method 1:
This is a linear equation, with $P(x)=-1 / x$ and $Q(x)=1$. Thus,

$$
\begin{array}{r}
I=\int P(x) d x=-\int \frac{1}{x} d x=-\ln x \Rightarrow e^{I}=e^{-\ln x}=\frac{1}{x} \\
y e^{I}=\int e^{I} Q(x) d x+\ln c \Rightarrow \frac{y}{x}=\int \frac{1}{x} d x+\ln c=\ln (c x) \Rightarrow y=x \ln (x c)
\end{array}
$$

Method 2:
Let $y=u v$ and $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$. Thus, the above equation is converted to

$$
u \frac{d v}{d x}+v \frac{d u}{d x}-\frac{u v}{x}=1 \Rightarrow u \frac{d v}{d x}+v \underbrace{\left(\frac{d u}{d x}-\frac{u}{x}\right)}_{=0}=1 .
$$

Setting the term involving v equal to zero, we get,

$$
\frac{d u}{d x}=\frac{u}{x} \Rightarrow \ln u=\ln (c x) \Rightarrow u=c_{1} x
$$

Let us replace $u=c_{1} x$ in the equation above (term involving v is still equal to zero),

$$
c_{1} x \frac{d v}{d x}=1 \Rightarrow c_{1} v=\ln (c x)
$$

Finally, using $y=u v$, we get,

$$
y=c_{1} x \frac{1}{c_{1}} \ln (c x) \Rightarrow y=x \ln (c x) .
$$

Example 2: Solve $y^{\prime}+y=e^{x}$.
Method 1:
This is a linear equation with $P(x)=1$ and $Q(x)=e^{x}$. Thus,

$$
\begin{array}{r}
I=\int P d x=x \Rightarrow e^{I}=e^{x} . \\
y e^{I}=\int e^{I} Q d x+c=\int e^{2 x} d x+c=\frac{e^{2 x}}{2}+c \Rightarrow y=\frac{e^{x}}{2}+c e^{-x} .
\end{array}
$$

Method 2:

[^4]Let $y=u v$ and $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$. Thus, the above equation is converted to

$$
u \frac{d v}{d x}+v \frac{d u}{d x}+u v=e^{x} \Rightarrow u \frac{d v}{d x}+v \underbrace{\left(\frac{d u}{d x}+u\right)}_{=0}=e^{x} .
$$

Setting the term involving v equal to zero, we get,

$$
\frac{d u}{d x}=-u \Rightarrow \ln u=-x+c_{1} \Rightarrow u=c_{2} e^{-x}
$$

Let us replace $u=c_{2} e^{-x}$ in the equation above (term involving v is still equal to zero),

$$
c_{2} e^{-x} \frac{d v}{d x}=e^{x} \Rightarrow c_{2} v=\frac{e^{2 x}}{2}+c_{3} .
$$

Finally, using $y=u v$, we get,

$$
y=c_{2} e^{-x}\left(\frac{e^{2 x}}{2 c_{2}}+\frac{c_{3}}{c_{2}}\right) \Rightarrow y=\left(\frac{e^{x}}{2}+c e^{-x}\right) .
$$

Example 3: Solve $x^{2} y^{\prime}+3 x y=1$.
Method 1:
We can rewrite the given equation as $y^{\prime}+\frac{3}{x} y=\frac{1}{x^{2}}$. This is a linear equation with $P(x)=3 / x$ and $Q(x)=1 / x^{2}$. Thus,

$$
\begin{array}{r}
I=\int P d x=3 \ln x \Rightarrow e^{I}=x^{3} . \\
y e^{I}=\int e^{I} Q d x+c=\int x d x+c=\frac{x^{2}}{2}+c \Rightarrow y=\frac{1}{2 x}+c x^{-3} .
\end{array}
$$

Method 2:
Let $y=u v$ and $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$. Thus, the above equation is converted to

$$
u \frac{d v}{d x}+v \frac{d u}{d x}+\frac{3 u v}{x}=\frac{1}{x^{2}} \Rightarrow u \frac{d v}{d x}+v \underbrace{\left(\frac{d u}{d x}+\frac{3 u}{x}\right)}_{=0}=\frac{1}{x^{2}} .
$$

Setting the term involving v equal to zero, we get,

$$
\frac{d u}{d x}=-\frac{3 u}{x} \Rightarrow \ln u=-3 \ln x+\ln c_{1} \Rightarrow u=c_{1} x^{-3}
$$

Let us replace $u=c_{1} x^{-3}$ in the equation above (term involving v is still equal to zero),

$$
c_{1} x^{-3} \frac{d v}{d x}=\frac{1}{x^{2}} \Rightarrow c_{1} v=\frac{x^{2}}{2}+c_{2}
$$

Finally, using $y=u v$, we get,

$$
y=c_{1} x^{-3}\left(\frac{x^{2}}{2 c_{1}}+\frac{c_{2}}{c_{1}}\right) \Rightarrow \frac{1}{2 x}+c x^{-3} .
$$

5.2.5 Bernoulli equation

Bernoulli equations can be written in the form of

$$
\begin{equation*}
y^{\prime}+P y=Q y^{n}, \tag{5.17}
\end{equation*}
$$

where P and Q are functions of x (or can be constants). Clearly, it is not a linear equation, but can easily be converted to a linear equation, by making a change of variable,

$$
\begin{equation*}
z=y^{1-n} \Rightarrow z^{\prime}=(1-n) y^{-n} y^{\prime} . \tag{5.18}
\end{equation*}
$$

Multiplying Eq. 5.17 with $(1-n) y^{-n}$ and then making the above substitution, we get

$$
\begin{array}{r}
(1-n) y^{-n} y^{\prime}+(1-n) P y^{1-n}=(1-n) Q \tag{5.19}\\
z^{\prime}+(1-n) P z=(1-n) Q .
\end{array}
$$

Thus, we have converted the non-linear equation 5.17 to a linear equation and we already know how to solve this. Some examples are given below.

Example 1: Solve $y^{\prime}+y=x y^{2 / 3}$.
Substitute $z=y^{1 / 3} \Rightarrow z^{\prime}=\frac{1}{3} y^{-2 / 3} y^{\prime}$. Multiplying both sides of the given equation with $\frac{1}{3} y^{-2 / 3}$, we get,

$$
\frac{1}{3} y^{-2 / 3} y^{\prime}+\frac{1}{3} y^{1 / 3}=\frac{1}{3} x \Rightarrow z^{\prime}+\frac{1}{3} z=\frac{1}{3} x .
$$

Thus, we have converted the non-linear equation to a linear equation in x and z, with $P(x)=1 / 3$ and $Q(x)=x / 3$. Thus,

$$
\begin{array}{r}
I=\int P d x=\frac{x}{3} \Rightarrow e^{I}=e^{x / 3} \\
z e^{I}=\int e^{I} Q d x+c=\int e^{x / 3} \frac{x}{3} d x+c=x e^{x / 3}-3 e^{x / 3}+c \Rightarrow z=x-3+c e^{-x / 3} .
\end{array}
$$

Replacing $z=y^{1 / 3}$, the answer is $y^{1 / 3}=x-3+c e^{-x / 3}$.
Example 2: Solve $y^{\prime}+\frac{1}{x} y=2 x^{3 / 2} y^{1 / 2}$.
Substitute $z=y^{1 / 2} \Rightarrow z^{\prime}=\frac{1}{2} y^{-1 / 2} y^{\prime}$. Multiplying both sides of the given equation with $\frac{1}{2} y^{-1 / 2}$, we get,

$$
\frac{1}{2} y^{-1 / 2} y^{\prime}+\frac{1}{2 x} y^{1 / 2}=x^{3 / 2} \Rightarrow z^{\prime}+\frac{1}{2 x} z=x^{3 / 2} .
$$

Thus, we have converted the non-linear equation to a linear equation in x and z, with $P(x)=1 / 2 x$ and $Q(x)=x^{3 / 2}$. Thus,

$$
\begin{aligned}
I & =\int P d x
\end{aligned}=\frac{1}{2} \ln x \Rightarrow e^{I}=x^{1 / 2}, ~ \begin{aligned}
& x^{5 / 2} \\
& z e^{I}=\int e^{I} Q d x+c=\int x^{1 / 2} x^{3 / 2} d x+c=\frac{x^{3}}{3}+c \Rightarrow z=\frac{x^{1 / 2}}{3}+c
\end{aligned}
$$

Replacing $z=y^{1 / 2}$, the answer is $y^{1 / 2}=\frac{x^{5 / 2}}{3}+c x^{-1 / 2}$.

5.2.6 Exercise

Separable equations (optional)

1. Solve $\left(1+y^{2}\right) d x+x y d y=0$, given the boundary condition $y=0$, when $x=5$.

Answer: $x^{2}\left(1+y^{2}\right)=c, c=25$
2. Solve $x y^{\prime}-x y=y$, given the boundary condition $y=1$, when $x=1$.

Answer: $y=c x e^{x}$, where $c=1 / e$
3. Solve $\left(y-x^{2} y\right) d y+\left(2 x y^{2}+x\right) d x=0$, given the boundary condition $y=0$, when $x=\sqrt{2}$.
Answer: $\left(2 y^{2}+1\right)=c\left(x^{2}-1\right)^{2}$, where $c=1$
4. Solve $y d y+\left(x y^{2}-8 x\right) d x=0$, given the boundary condition $y=3$, when $x=1$.

Answer: $y^{2}=8+e^{c-x^{2}}$, where $c=1$
5. Solve $y^{\prime}=\cos (x+y)$. [Hint: substitute $u=x+y$]

Answer: $\tan \frac{1}{2}(x+y)=x+c$
6. Solve $x y^{\prime}+y=e^{x y}$. [Hint: substitute $u=x y$]

Answer: $y=-x^{-1} \ln (c-x)$

Exact equations

7. $\left(\cos x \cos y+\sin ^{2} x\right) d x-\left(\sin x \sin y+\cos ^{2} y\right) d y=0$.

Answer: $4 \sin x \cos y+2 x-\sin 2 x-2 y-\sin 2 y=c$
8. $\left(1+y^{2}\right) d x+x y d y=0$.

Answer: $\frac{x^{2}}{2}+\frac{x^{2} y^{2}}{2}+c=0$
9. $(x-\cos y) d x-\sin y d y=0$.

Answer: $e^{-x}(\cos y-x-1)=c$
10. $\left(x y^{2}-2 y^{3}\right) d x+\left(3-2 x y^{2}\right) d y=0$.

Answer: $x e^{x y}+c=0$
11. $y d x+\left(x^{2}+y^{2}-x\right) d y=0$.

Answer: $\tan ^{-1} \frac{x}{y}+y=c$
12. $(x-1) y^{\prime}+y-x^{-2}+2 x^{-3}=0$.

Answer: $y^{2}=-1 / x^{2}+c /(x-1)$
13. For an inexact equation, $P(x, y) d x+Q(x, y) d y=0$, it is given that $\frac{1}{Q}\left[\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right]=$ $f(x)$. Prove that e^{I} is an integrating factor for the given equation, where $I=$ $\int f(x) d x$. [Hint: note that $d I / d x=f(x)$. You have to prove that, $e^{I} P(x, y) d x+$ $e^{I} Q(x, y) d y=0$ is an exact differential equation.]
14. For an inexact equation, $P(x, y) d x+Q(x, y) d y=0$, it is given that $\frac{1}{P}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right]=$ $f(y)$. Prove that e^{I} is an integrating factor for the given equation, where $I=$ $\int f(y) d y$. [Hint: note that $d I / d y=f(y)$. You have to prove that, $e^{I} P(x, y) d x+$ $e^{I} Q(x, y) d y=0$ is an exact differential equation.]

Homogeneous equations (optional)

15. Check whether following functions are homogeneous and if yes, find the degree.
(a) $4 x^{2}+y^{2}$
(b) $x^{2}-5 x y+y^{3} / x$
(c) $x y \sin (x / y)$
(d) $\left(y^{4}-x^{3} y\right) / x-x y^{2} \sin (x / y)$
(e) $x \sin (x y)$
(f) $x^{2} y^{3}+x^{5} \ln (y / x)-y^{6} / \sqrt{x^{2}+y^{2}}$
(g) $x^{3}+x^{2} y+x y^{2}+y^{3}$
(h) $x^{2}+y$
(i) $x^{2}+x y+y^{3}$
(j) $x+\cos y$
16. Solve $y d y=\left(-x+\sqrt{x^{2}+y^{2}}\right) d x$.

Answer: $y^{2}=2 c x+c^{2}$
17. Solve $x y d x+\left(y^{2}-x^{2}\right) d y=0$.

Answer: $y^{2}=c e^{-x^{2} / y^{2}}$
18. Solve $\left(x^{2}+y^{2}\right) d x-x y d y=0$.

Answer: $y= \pm \sqrt{2 \ln (c x)}$.
19. Solve $(y-x) d x+(x+y) d y=0$.

Answer: $y^{2}+2 x y-x^{2}=c$, which can be further written as $y= \pm \sqrt{2 x^{2}+c}-x$.
20. Solve $y^{\prime}=y / x-\tan (y / x)$.

Answer: $x \sin (y / x)=c$
21. Prove that, $1 /(P x+Q y)$ is an integrating factor for Eq. 5.9. [Hint: you have to prove that $(P d x+Q d y) /(P x+Q y)$ is an exact differential, provided P and Q are homogeneous functions of same degree.]

Linear equations

22. Prove that e^{I} is the integrating factor for Eq. 5.12, i.e., $e^{I}(P y-Q) d x+e^{I} d y=0$ is an exact equation. Following the technique of solving an exact equation, prove that $y e^{I}=\int e^{I} Q d x+c$.
23. Solve $d y+\left(2 x y-x e^{-x^{2}}\right) d x=0$.

Answer: $y=\frac{x^{2}}{2} e^{-x^{2}}+c e^{-x^{2}}$
24. Solve $2 x y^{\prime}+y=2 x^{5 / 2}$.

Answer: $y=\frac{1}{3} x^{5 / 2}+c x^{-1 / 2}$
25. Solve $y^{\prime} \cos x+y=\cos ^{2} x$.

Answer: $y(\sec x+\tan x)=x-\cos x+c$
26. Solve $y^{\prime}+\frac{y}{\sqrt{x^{2}+1}}=\frac{1}{\left(x+\sqrt{x^{2}+1}\right)}$.

Answer: $y=\frac{(x+c)}{x+\sqrt{x^{2}+1}}$

Bernoulli equations

27. $3 x y^{2} y^{\prime}+3 y^{3}=1$.

Answer: $y^{3}=\frac{1}{3}+c x^{-3}$
28. $y y^{\prime}-2 y^{2} \cot x=\sin x \cos x$.

Answer: $y^{2}=\sin ^{2} x\left(-1+c \sin ^{2} x\right)$

5.3 Second order linear differential equations

Differential equations of second order contain only first and second derivative of y, i.e., y^{\prime} and $y^{\prime \prime}$. We are going to discuss two types of second order equations in this section.

5.3.1 Constant coefficients and zero right hand side

Equations of the form

$$
\begin{equation*}
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \tag{5.20}
\end{equation*}
$$

where a_{2}, a_{1}, a_{0} are constants, are known as homogeneous equations. Expressing $D=d / d x$, the above equation is converted to

$$
\begin{equation*}
\underbrace{\left(a_{2} D^{2}+a_{1} D+a_{0}\right)}_{\text {auxiliary }} y=0 \tag{5.21}
\end{equation*}
$$

We could also have substituted $y=e^{c x}$ in Eq. 5.20 and get the same auxiliary equation,

$$
\begin{equation*}
a_{2} c^{2}+a_{1} c+a_{0}=0 \tag{5.22}
\end{equation*}
$$

Now, let us consider three possible cases.

Case 1: auxiliary equation having two distinct real roots

Expressing the auxiliary equation as $\left(D-c_{1}\right)\left(D-c_{2}\right),{ }^{8}$ we can rewrite Eq. 5.21 as,

$$
\begin{equation*}
\left(D-c_{1}\right)\left(D-c_{2}\right) y=0 \tag{5.23}
\end{equation*}
$$

Thus, in order to solve Eq. 5.21 , we need to solve two first order equations,

$$
\begin{equation*}
\left(D-c_{1}\right) y=0 \quad \& \quad\left(D-c_{2}\right) y=0 \tag{5.24}
\end{equation*}
$$

These are separable equations, with solutions $y_{1}=e^{c_{1} x}$ and $y_{2}=e^{c_{2} x}$ and the general solution is a linear combination of the two. ${ }^{9}$ Thus, if c_{1} and c_{2} are two roots of the auxiliary equation, the general solution is,

$$
\begin{equation*}
y=A e^{c_{1} x}+B e^{c_{2} x} \text {. } \tag{5.25}
\end{equation*}
$$

Case 2: auxiliary equation having complex conjugate roots

Let the roots of the auxiliary equation be, $c_{1}=\alpha+\iota \beta$ and $c_{2}=\alpha-\iota \beta$. Thus, we have two solutions: $y_{1}=e^{(\alpha+\iota \beta) x}$ and $y_{2}=e^{(\alpha-\iota \beta) x}$, which are also complex conjugates of each other. By taking linear combination, we get a complex solution of the form,

$$
\begin{equation*}
y=e^{\alpha x}\left(A e^{\iota \beta x}+B e^{-\iota \beta x}\right) \tag{5.26}
\end{equation*}
$$

where A and B are arbitrary complex constants. Since $e^{ \pm \iota \beta x}=\cos \beta x \pm \iota \sin \beta x$, we can rewrite the above equation as, $y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)$, where $C_{1}=(A+B)$ and $C_{2}=\iota(A-B)$. Note that, by selecting appropriate constants, we can get real, as well as imaginary solutions. For example, if we take $A=B=1 / 2$, we get a real solution $y=e^{\alpha x} \cos \beta x$. Similarly, if we take $A=1 / 2 \iota$ and $B=-1 / 2 \iota$, we get another real solution $y=e^{\alpha x} \sin \beta x$. Interestingly, since $\cos \beta x$ and $\sin \beta x$ are linearly independent functions, we can get a series of real solutions by taking

[^5]linear combination of them, i.e.,
\[

$$
\begin{equation*}
y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right) \tag{5.27}
\end{equation*}
$$

\]

where C_{1} and C_{2} are real arbitrary constants. We can further express this as,

$$
\begin{equation*}
y=C e^{\alpha x} \sin (\beta x+\gamma) \tag{5.28}
\end{equation*}
$$

where C and γ are arbitrary constants.

Case 3: auxiliary equation having same roots

There exist one more possibility, that both the roots of the auxiliary equation are same. Then, Eq. 5.20 takes the following form:

$$
\begin{equation*}
(D-c) \underbrace{(D-c) y}_{u}=0 . \tag{5.29}
\end{equation*}
$$

Obviously, solving $(D-c) y=0$, we get one solution to be $y=A e^{c x}$. In order to get the other solution, we note that $(D-c) y$ is going to be some function $u(x)$, such that we can write the above equation as,

$$
\begin{equation*}
(D-c) u=0 \Rightarrow u=A e^{c x} \tag{5.30}
\end{equation*}
$$

Finally, we can solve for y from,

$$
\begin{equation*}
(D-c) y=A e^{c x} \Rightarrow y^{\prime}-c y=A e^{c x} \tag{5.31}
\end{equation*}
$$

This is a linear first order equation, having non-zero right hand side, with $P=-c$ and $Q=A e^{c x}$. The solution is given by Eq. 5.16, where $I=\int P d x=-c x$. We can write the solution as,

$$
\begin{equation*}
y e^{I}=\int e^{I} Q d x=\int e^{-c x} B e^{c x} d x=A x+B \Rightarrow y=(A x+B) e^{c x} \tag{5.32}
\end{equation*}
$$

Example 1: Simple harmonic motion.

Such periodic or oscillatory motion happens when the restoring force is proportional to the displacement and acts in the opposite direction. There are several examples, like spring-mass system, pendulum, vibration of a structure (like a bridge), vibration of atoms in a crystal etc.

Let us consider a spring-mass system. Assuming no friction, we can write the Newton's second law of motion as $m \frac{d^{2} x}{d t^{2}}=-k x=-m \omega^{2} x .{ }^{10}$ Thus, we have to solve a differential equation of the form $\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0$. Writing $D=d / d t$, we get,

$$
\left(D^{2}+\omega^{2}\right) x=0
$$

[^6]Thus, the auxiliary equation we have to solve is,

$$
D^{2}+\omega^{2}=0,
$$

and the roots are $D= \pm \iota \omega$. Thus, the general solution can be expressed in any of the three forms given in Eq. 5.26, Eq. 5.27 or Eq. 5.28,

$$
\begin{array}{r}
x(t)=A e^{i \omega t}+B e^{-\iota \omega t}, \\
x(t)=C_{1} \cos \omega t+C_{2} \sin \omega t, \\
x(t)=C \sin (\omega t+\gamma) .
\end{array}
$$

Example 2: Damped harmonic motion.
If energy of an oscillator is dissipated, leading to gradual decrease of amplitude or preventing it from oscillating, such a motion is termed as damped harmonic motion. Damping happens because of various different reasons like presence of friction or viscous drag etc. ${ }^{11}$

Again, let us consider a spring-mass system. The damping force (due to friction) is linearly dependent on velocity and it acts opposite to the direction of the velocity, i.e., $F_{d}=-c \frac{d x}{d t}$. Thus, the equation of motion is given by,

$$
m \frac{d^{2} x}{d t^{2}}=-k x-c \frac{d x}{d t} \Rightarrow m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0 .
$$

The auxiliary equation is $m D^{2}+c D+k=0$, having roots $D=\frac{-c \pm \sqrt{c^{2}-4 m k}}{2 m}=$ $-\frac{c}{2 m} \pm \sqrt{\frac{c^{2}-4 m k}{4 m^{2}}}=-\gamma \pm \sqrt{\gamma^{2}-\omega^{2}}$. Note that, $\gamma=\frac{c}{2 m}$ is known as the damping coefficient and the reason is going to be obvious when we discuss the solutions of the equation of motion. Let us discuss three possible cases.

Case 1: Overdamped oscillator: $c^{2}-4 m k>0$
In this case, the roots of the auxiliary equation are $-\gamma \pm \beta$, where $\beta=\sqrt{\gamma^{2}-\omega^{2}}$. The general solution is given by $x(t)=e^{-\gamma t}\left(A e^{\beta t}+B e^{-\beta t}\right)$.

Case 2: Critically damped oscillator: $c^{2}-4 m k=0$
In this case, both the roots are equal to γ. Thus, the general solution is $x(t)=$ $e^{-\gamma t}(A t+B)$.

Case 3: Underdamped oscillator: $c^{2}-4 m k<0$
In this case, we have complex roots $-\gamma \pm \iota \beta$, where $\beta=\sqrt{\gamma^{2}-\omega^{2}}$. The general solution is given by $x(t)=e^{-\gamma t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)$.

Displacement is plotted as a function of time for all three cases in Fig. 5.1. Note that, there are other systems for which we need to solve a similar differential equation and not surprisingly, we will get similar solutions. One famous example

[^7]

Figure 5.1: Displacement as a function of time for damped harmonic motion.

Figure 5.2: Different systems having similar differential equation: (a) spring-mass and (b) RLC circuit connected in series. Images are take from Wikipedia.
is a RLC circuit, where the components are connected in series (see Fig. 5.2). In this case, the governing equation is ${ }^{12}$

$$
L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{I}{C}=\frac{d V}{d t}
$$

and if we set right hand side equal to zero, we solve an equation similar to damped harmonic motion. In this case, resistance has a similar role as played by friction in case of spring-mass system.

5.3.2 Exercise

1. Re-derive Eq. 5.25: write auxiliary equation $\left(D-c_{1}\right) \underbrace{\left(D-c_{2}\right) y}_{u(x)}=0$. $\left(D-c_{2}\right) y$ must be some function of x, say $u(x)$. Now, first solve for $u(x)$ from $\left(D-c_{1}\right) u=$ 0 . Then, solve for $\left(D-c_{2}\right) y=u$ and check whether you get the same answer as Eq. 5.25.
2. Consider the solution in case of overdamped harmonic motion. Can β and γ take any value for the general solution to be stable [i.e., $x(t)$ does not go to $\pm \infty$ with increasing time] or there is some restriction?

Solve the differential equations

3. $y^{\prime \prime}+y^{\prime}-2 y=0$

Answer: $y=A e^{x}+B e^{-2 x}$
4. $y^{\prime \prime}+9 y=0$

Answer: $y=A e^{3 \iota x}+B e^{-3 \iota x}$
5. $y^{\prime \prime}-2 y^{\prime}+y=0$

Answer: $y=(A x+B) e^{x}$
6. $y^{\prime \prime}-5 y^{\prime}+6 y=0$

Answer: $y=A e^{3 x}+B e^{2 x}$
7. $y^{\prime \prime}-4 y^{\prime}+13 y=0$

Answer: $y=A e^{2 x} \sin (2 x+\gamma)$
8. $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$

Answer: $y=(A+B x) e^{-3 x / 2}$

[^8]
Check for linear independence (by calculating Wronskian)

9. $e^{-x}, e^{-4 x}$
10. $e^{a x}, e^{b x}, a \neq b$ (a, b real or imaginary)
11. $e^{a x}, x e^{a x}$
12. $\sin \beta x, \cos \beta x$
13. $1, x, x^{2}$
14. $e^{a x}, x e^{a x}, x^{2} e^{a x}$

5.3.3 Constant coefficients and non-zero right hand side

Equations of the form

$$
\begin{equation*}
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x), \tag{5.33}
\end{equation*}
$$

where a_{2}, a_{1}, a_{0} are constants, are known as inhomogeneous equations. The function $f(x)$ is often termed as a forcing function, which represents an applied force or emf (electromotive force). If we set the right hand side equal to zero, we get a complementary function y_{c}, which is the solution of the homogeneous equation. For non-zero right hand side, we get a particular solution y_{p} and the general solution is given by,

$$
\begin{equation*}
y=y_{c}+y_{p} . \tag{5.34}
\end{equation*}
$$

We already know how to solve for y_{c}. Let us learn a few tricks to solve for y_{p}.

Method 1: Via inspection

Let us consider the equation $y^{\prime \prime}+y^{\prime}-2 y=-3$. You can check that the complementary function is $y_{c}=A e^{x}+B e^{-2 x}$. Via inspection, it is easy to find the particular solution to be $y_{p}=3 / 2$ and the general solution is $y=A e^{x}+B e^{-2 x}+3 / 2$.

Method 2: Solve two successive first order linear equations

Instead of a constant, if the right hand side is some function, then method of inspection to find y_{p} is most likely going to fail. For example, let us consider the equation $y^{\prime \prime}+y^{\prime}-2 y=e^{x}$. The complimentary function is same as the previous problem. First we write the differential equation as,

$$
(D-1) \underbrace{(D+2) y}_{u}=e^{x} .
$$

Now, let $(D+2) y=u$, such that we get a first order linear differential equation,

$$
(D-1) u=e^{x} \Rightarrow u^{\prime}-u=e^{x},
$$

with $P=-1$ and $Q=e^{x}$. The solution is,

$$
\begin{array}{r}
I=\int P d x=-x \\
u e^{I}=\int e^{I} Q d x+c=\int d x+c=x+c \Rightarrow u=x e^{x}+c e^{x} .
\end{array}
$$

Thus, the first order linear differential equation for y is,

$$
(D+2) y=x e^{x}+c e^{x} \Rightarrow y^{\prime}+2 y=x e^{x}+c e^{x},
$$

where $P=2$ and $Q=x e^{x}+c e^{x}$. The solution is,

$$
\begin{array}{r}
I=\int P d x=2 x \\
y e^{I}=\int e^{I} Q d x+c_{1}=\int\left(x e^{3 x}+c e^{3 x}\right) d x+c_{1}=\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+\frac{1}{3} c e^{3 x}+c_{1} \\
y=\underbrace{\frac{1}{3} x e^{x}-\frac{1}{9} e^{x}}_{y_{p}}+\underbrace{\frac{1}{3} c e^{x}+c_{1} e^{-2 x}}_{y_{c}} .
\end{array}
$$

I would like to draw attention to the fact that, we have obtained y_{c} from the arbitrary constants at every step. If we omit the arbitrary constants, we can quickly get the particular solution. Finally, we can beautify the final answer by writing $\frac{1}{3} c-\frac{1}{9}=c_{2}$, such that the general solution is $y=\frac{1}{3} x e^{x}+c_{2} e^{x}+c_{1} e^{-2 x}$.

5.3.4 Exercise

1. $y^{\prime \prime}-4 y=10$

Answer: $y=A e^{2 x}+B e^{-2 x}-\frac{5}{2}$
2. $y^{\prime \prime}+y^{\prime}-2 y=e^{2 x}$

Answer: $A e^{x}+B e^{-2 x}+\frac{1}{4} e^{2 x}$
3. $y^{\prime \prime}+y=2 e^{x}$

Answer: $y=A e^{\iota x}+B e^{-\iota x}+e^{x}$
4. $y^{\prime \prime}-y^{\prime}-2 y=3 e^{2 x}$

Answer: $y=A e^{-x}+B e^{2 x}+x e^{2 x}$
5. $y^{\prime \prime}+2 y^{\prime}+y=2 e^{-x}$

Answer: $y=\left(A x+B+x^{2}\right) e^{-x}$

5.4 Coupled first order differential equations

This I add as an application of eigenvalues and eigenvectors. Let $y_{1}(t)$ and $y_{2}(t)$ are both functions of t, having first derivatives $y_{1}^{\prime}=d y_{1} / d t$ and $y_{1}^{\prime}=d y_{2} / d t$. We
have to solve for y_{1} and y_{2} by solving two differential equations, given by

$$
\begin{gather*}
y_{1}^{\prime}=a y_{1}+b y_{2}, \tag{5.35}\\
y_{2}^{\prime}=c y_{1}+d y_{2} .
\end{gather*}
$$

Note that, we can express the above equation in the matrix form as,

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{ll}
a & b \tag{5.36}\\
c & d
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

Two column vectors $\overrightarrow{y^{\prime}}$ and \vec{y} are related by the matrix A, such that $\overrightarrow{y^{\prime}}=A \vec{y}$. Now, let us assume that $\vec{y}=B \vec{x}$, such that $\overrightarrow{y^{\prime}}=A B \vec{x}$ and we get,

$$
\begin{equation*}
B^{-1} \overrightarrow{y^{\prime}}=B^{-1} A B \vec{x} \Rightarrow \overrightarrow{x^{\prime}}=B^{-1} A B \vec{x} . \tag{5.37}
\end{equation*}
$$

If matrix B is made of eigenvectors of A, then we know that $B^{-1} A B$ is a diagonal matrix D, such that

$$
\begin{equation*}
\overrightarrow{x^{\prime}}=D \vec{x} \text {. } \tag{5.38}
\end{equation*}
$$

It is easy to solve for the vector $\vec{x}=\binom{x_{1}}{x_{2}}$ from the above equation, because D is a diagonal matrix, made of eigenvalues of A, say λ_{1} and λ_{2}. Thus, we solve for

$$
\begin{gather*}
x_{1}^{\prime}=\lambda_{1} x_{1} \Rightarrow x_{1}=c_{1} e^{\lambda_{1} t}, \tag{5.39}\\
x_{2}^{\prime}=\lambda_{2} x_{2} \Rightarrow x_{2}=c_{2} e^{\lambda_{2} t} .
\end{gather*}
$$

Finally, we use $\vec{y}=B \vec{x}$ to get the solution for $y_{1}(t)$ and $y_{2}(t)$.
Let us solve for,

$$
\begin{array}{r}
y_{1}^{\prime}=3 y_{1}+2 y_{2}, \tag{5.40}\\
y_{2}^{\prime}=6 y_{1}-y_{2} .
\end{array}
$$

The eigenvalues and eigenvectors for $A=\left(\begin{array}{cc}3 & 2 \\ 6 & -1\end{array}\right)$ are,

$$
\begin{equation*}
\lambda_{1}=-3,\binom{1}{-3} \quad \& \quad \lambda_{2}=5,\binom{1}{1} . \tag{5.41}
\end{equation*}
$$

Let us construct the matrices from the eigenvalues and eigenvectors: $D=\left(\begin{array}{cc}-3 & 0 \\ 0 & 5\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 1 \\ -3 & 1\end{array}\right)$. Now, using Eq. 5.38 , we can write,

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
-3 & 0 \tag{5.42}\\
0 & 5
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

and the solutions are, $x_{1}=c_{1} e^{-3 t}$ and $x_{2}=c_{2} e^{5 t}$. Now, we get the final solution
from $\vec{y}=B \vec{x} \Rightarrow\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}1 & 1 \\ -3 & 1\end{array}\right)\binom{x_{1}}{x_{2}}$,

$$
\begin{array}{r}
y_{1}(t)=c_{1} e^{-3 t}+c_{2} e^{5 t}, \tag{5.43}\\
y_{2}(t)=-3 c_{1} e^{-3 t}+c_{2} e^{5 t} .
\end{array}
$$

5.4.1 Exercise

1. Solve $y_{1}^{\prime}=y_{1}+y_{2}, y_{2}^{\prime}=4 y_{1}+y_{2}$.

Answer: $y_{1}=c_{1} e^{3 t}+c_{2} e^{-t}, y_{2}=2 c_{1} e^{3 t}-2 c_{2} e^{-t}$

5.5 Converting higher order to $1^{\text {st }}$ order equations

We can convert a linear differential equation of order n to n first order linear differential equations and then use the above technique to get a solution. Let us solve,

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \Rightarrow y^{\prime \prime}=-a_{0} y-a_{1} y^{\prime} . \tag{5.44}
\end{equation*}
$$

We do the following change of variables,

$$
\begin{array}{rlll}
x_{1}=y & \& & x_{2}=y^{\prime}, \tag{5.45}\\
x_{1}^{\prime}=y^{\prime}=x_{2} & \& & x_{2}^{\prime}=y^{\prime \prime} .
\end{array}
$$

Thus, we can write two coupled first order linear equation,

$$
\begin{array}{r}
x_{1}^{\prime}=0 x_{1}+1 x_{2}, \tag{5.46}\\
x_{2}^{\prime}=-a_{0} x_{1}-a_{1} x_{2} .
\end{array}
$$

Thus, we have converted a $2^{\text {nd }}$ order equation to two coupled $1^{\text {st }}$ order equations, which we can solve following the method shown in the previous section. We can do it for even higher order equations, like a $3^{r d}$ order equation,

$$
\begin{equation*}
y^{\prime \prime \prime}+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \Rightarrow y^{\prime \prime \prime}=-a_{0} y-a_{1} y^{\prime}-a_{2} y^{\prime \prime} \tag{5.47}
\end{equation*}
$$

Using the following substitution,

$$
\begin{equation*}
x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}, \tag{5.48}
\end{equation*}
$$

the above equation can be converted to three $1^{s t}$ order equations,

$$
\begin{array}{r}
x_{1}^{\prime}=0 x_{1}+1 x_{2}+0 x_{3}, \tag{5.49}\\
x_{2}^{\prime}=0 x_{1}+0 x_{2}+1 x_{3}, \\
x_{3}^{\prime}=-a_{0} x_{1}-a_{1} x_{2}-a_{2} x_{3} .
\end{array}
$$

Let us see an example, where we solve the following $2^{\text {nd }}$ order linear equation using this method,

$$
\begin{equation*}
y^{\prime \prime}+5 y_{1}-6 y=0 . \tag{5.50}
\end{equation*}
$$

Using the substitution $x_{1}=y, x_{2}=y^{\prime}$, we get two $1^{\text {st }}$ order equations to solve,

$$
\begin{array}{r}
x_{1}^{\prime}=0+x_{2}, \tag{5.51}\\
x_{2}^{\prime}=6 x_{1}-5 x_{2} .
\end{array}
$$

The eigenvalues and eigenvectors for matrix $A=\left(\begin{array}{cc}0 & 1 \\ 6 & -5\end{array}\right)$ are,

$$
\begin{equation*}
\lambda_{1}=1,\binom{1}{1} \quad \& \quad \lambda_{2}=-6,\binom{1}{-6} . \tag{5.52}
\end{equation*}
$$

The D matrix is given by $D=\left(\begin{array}{cc}1 & 0 \\ 0 & -6\end{array}\right)$ and the B matrix is given by, $B=\left(\begin{array}{cc}1 & 1 \\ 1 & -6\end{array}\right)$. Using Eq. 5.38 we can write

$$
\binom{z_{1}^{\prime}}{z_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \tag{5.53}\\
0 & -6
\end{array}\right)\binom{z_{1}}{z_{2}},
$$

and the solutions are $z_{1}=c_{1} e^{t}$ and $z_{2}=c_{2} e^{-6 t}$. Thus, the solution for x_{1} and x_{2} are,

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
1 & 1 \tag{5.54}\\
1 & -6
\end{array}\right)\binom{z_{1}}{z_{2}} .
$$

Now, since $y=x_{1}$, we write the final solution as, $y=c_{1} e^{t}+c_{2} e^{-6 t}$.

5.5.1 Exercise

1. $y^{\prime \prime}+y^{\prime}-2 y=0$

Answer: $y=c_{1} e^{t}+c_{2} e^{-2 t}$

[^0]: ${ }^{1}$ Check for an exact differential: $\partial P / \partial y=\partial Q / \partial x$, because $\partial^{2} F / \partial y \partial x=\partial^{2} F / \partial x \partial y$.

[^1]: ${ }^{2}$ Homogeneous function has multiplicative scaling behavior. That means, if we multiply each variable by same factor, then the function is multiplied by some integral power of this factor. For example, $f(x, y)$ is a homogeneous function of degree n, if $f(t x, t y)=t^{n} f(x, y)$. Example: $x^{2}+x y+$ $y^{2}+y^{3} / x$ is a homogeneous function of degree 2. Example: $x^{2} y+x^{4} / y+y^{3}$ is a homogeneous function of degree 3. Example: $x^{2} y+x y+x$ is not a homogeneous function.

[^2]: ${ }^{3}$ Example: a homogeneous function of degree 2, $x^{2}+x y$ can be expressed as $x^{2}(1+y / x)=x^{2} f(y / x)$.
 ${ }^{4}$ There is an alternate method of solving homogeneous differential equations. We can prove that $1 /(P x+Q y)$ is an integrating factor for Eq. 5.9.

[^3]: ${ }^{5}$ There is an alternate way to solve linear equations, to be shown in the examples.

[^4]: ${ }^{6}$ From Eq. 5.16, $y_{p} e^{I}=\int e^{I} Q d x$ and $y_{c} e^{I}=c$, such that $\left(y_{p}+y_{c}\right) e^{I}=y e^{I}=\int e^{I} Q d x+c$.
 ${ }^{7}$ Note that, the general solution of Eq. 5.12, i.e., $y=y_{p}+y_{c}$ is not unique.

[^5]: ${ }^{8} c_{1}$ and c_{2} are the roots of the auxiliary equation $a_{2} D^{2}+a_{1} D+a_{0}=0$, given by $\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}$.
 ${ }^{9}$ We can do this as two solutions are linearly independent. Two functions $f_{1}(x)$ and $f_{2}(x)$ are linearly independent if the Wronskian is not equal to zero. Wronskian is given by: $W=\left|\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ f_{1}^{\prime}(x) & f_{2}^{\prime}(x)\end{array}\right|$.

[^6]: ${ }^{10}$ Potential energy of a spring is given by $U(x)=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2}$ and the force $=-\frac{d U}{d x}$. Such a force is known as conservative force and we already know that work done is independent of the path in such a force field.

[^7]: ${ }^{11}$ Consider a child playing on a swing. If we do not apply any force, the amplitude of oscillation of the swing decreases gradually.

[^8]: ${ }^{12}$ We know that $V=R I, V=Q / C, V=L(d I / d t)$. Combining, we get $L \frac{d I}{d t}+R I+\frac{Q}{C}=V$. Taking time derivative and noting that $I=\frac{d Q}{d t}$, we get $L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{I}{C}=\frac{d V}{d t}$.

