
Chapter 5

Ordinary Differential Equations

5.1 Linear and non-linear equations

Assuming x and y to be independent and dependent variable, respectively, a linear
differential equation of order n is given by

a0y + a1
dy

dx
+ a2

d2y

dx2
+ a3

d3y

dx3
+ · · · ·+an

dny

dxn
= b, (5.1)

where a’s and b are functions of x (or constants). Some examples of linear equa-
tions are,

xy� + x2y = ex, (order 1) (5.2)

x3y�� + exy� + lnxy = cosx, (order 2)

y��� − 2y�� + y� = 2 sinx(order 3).

Note that, in each of the above equation, dependent variable y and all its derivative
occur linearly. The order of the differential equation is decided according to the
order of the highest derivative included in the equation. General solution of a
linear differential equation of order n has n independent arbitrary constants and
we can get a particular solution by assigning particular values to the constants,
based on boundary condition or initial condition.

Some examples of the non-linear equations are,

y� − ln y = 0, (order 1) (5.3)

x3y�� + y� − y3 = sinx, (order 2)

y��� − 2y�� + y�2 + x2y = 2 sin y(order 3).

Note that, in each of the above equation, either the dependent variable y or some
of its derivative does not occur linearly.

5.2 First order differential equations

Differential equations of first order contain only first derivative of y, i.e., y�. We
are going to discuss different types of first order equations in this section.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

5.2.1 Separable equations (optional)

Separable equations are of the form y� = f(x)/g(y), such that all the terms con-
taining y can be written on one side of the equation and all the terms containing
x can be written on the other,

g(y)dy = f(x)dx. (5.4)

Note that, we can solve linear, as well as non-linear equations using this method.

Example 1: Solve xy� = y, given boundary condition y = 3, when x = 2.
We can write,

�
dy

y
=

�
dx

x
⇒ ln(y) = ln(ax) ⇒ y = ax.

Using the boundary condition, we get 3/2.

Example 2: Solve x
�
1− y2dx+y

√
1− x2dy = 0, given boundary condition y = 0.5,

when x = 0.5.
We can write,

�
ydy�
1− y2

=

� −xdx√
1− x2

.

Let us put 1−y2 = u2 and 1−x2 = v2, such that the above equation is converted to

−
�

du =

�
dv ⇒ (1− y2)1/2 + (1− x2)1/2 = c,

where c =
√
3.

Example 3: Solve y� sinx = y ln y, given boundary condition y = e, when x = π/3.
We can write,

�
dy

y ln y
=

�
dx

sinx
⇒

�
dy

y ln y
=

�
cscxdx.

Left hand side is easy to integrate, if we substitute ln y = u, such that,
�

dy

y ln y
=

�
du

u
= lnu = ln ln y.

In order to integrate the right hand side, we multiply and divide by (cscx− cotx),
and substitute (cscx− cotx) = v, such that,

�
cscxdx =

�
cscx(cscx− cotx)

(cscx− cotx)
dx =

�
dv

v
= ln v = ln(cscx− cotx).

Using the boundary condition, the answer is ln y = c(cscx− cotx), where c =
√
3.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

5.2.2 Exact equations

Say we have to solve a first order differential equation of the form,

P (x, y)dx+Q(x, y)dy = 0. (5.5)

We know that, if the above expression is an exact differential, then we can define
a function F (x, y), such that P = ∂F/∂x and Q = ∂F/∂y.1 Thus, we can write

Pdx+Qdy = dF = 0 ⇒ F (x, y) = c. (5.6)

Often, an inexact differential can be converted to an exact equation by multi-
plying it by an appropriate integrating factor. For example, xdy− ydx = 0 is not an
exact differential, because P = −y, Q = x and ∂P/∂y �= ∂Q/∂x. But we can make
it exact by dividing it with x2 and thus, 1/x2 is the integrating factor. Let us verify
this,

xdy − ydx

x2
= 0 ⇒ 1

x
dy − y

x2
dx = 0 ⇒ P1(x, y) = − y

x2
& Q1(x, y) =

1

x
.

Now, we satisfy the condition ∂P1/∂y = ∂Q1/∂x = −1/x2.
In general, by multiplying the given inexact equation with the integrating factor

U(x, y), we get an equation of the form U(x, y)P (x, y)� �� �
P1(x,y)

dx+U(x, y)Q(x, y)� �� �
Q1(x,y)

dy = 0, which

is an exact equation, i.e., ∂P1(x,y)
∂y = ∂Q1(x,y)

∂x . However, it might not be a trivial
exercise to find the integrating factor by inspection. We will learn a few tricks to
do this via some examples.

Example 1: Solve (3x2y3 − 5x4)dx+ (y + 3x3y2)dy = 0
Since P (x, y) = 3x2y3 − 5x4 and Q(x, y) = y + 3x3y2, you can easily verify that,

∂P/∂y = ∂Q/∂x = 9x2y2 and thus, this is an exact equation. Now, we have to find
a function F (x, y), such that P = ∂F/∂x and Q = ∂F/∂y. We can write,

F (x, y) =

�
P (x, y)dx =

�
(3x2y3 − 5x4)dx = x3y3 − x5 + f(y).

Thus, we have to find f(y) to get the solution. Using the other equation, we can
write,

y + 3x3y2 =
∂F

∂y
= 3x3y2 + f �(y) ⇒ f(y) =

y2

2
+ c1.

Thus, F (x, y) = x3y3 − x5 + y2

2 + c1 and the general solution of the given differential
equation is

F (x, y) = c2 ⇒ x3y3 − x5 +
y2

2
= c

where the constant c replaces both c1 and c2. You should differentiate the answer

1Check for an exact differential: ∂P/∂y = ∂Q/∂x, because ∂2F/∂y∂x = ∂2F/∂x∂y.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

and check whether you get the equation given in the question.

Example 2: Solve (2xe3y + ex)dx+ (3x2e3y − y2)dy = 0
Since P (x, y) = (2xe3y + ex) and Q(x, y) = (3x2e3y − y2), you can easily verify that

∂P/∂y = ∂Q/∂x = 6xe3y and thus, this is an exact equation. Now, we have to find
a function F (x, y), such that P = ∂F/∂x and Q = ∂F/∂y. We can write,

F (x, y) =

�
P (x, y)dx =

�
(2xe3y + ex)dx = x2e3y + ex + f(y).

Thus, we have to find f(y) to get the solution. Using the other equation, we can
write,

3x2e3y − y2 =
∂F

∂y
= 3x2e3y + f �(y) ⇒ f(y) =

y3

3
+ c1

Thus, F (x, y) = x2e3y+ex−y3/3+c1 and the general solution for the given differential
equation is

F (x, y) = c2 ⇒ x2e3y + ex − y3/3 = c

where the constant c replaces both c1 and c2.

Example 3: Solve (x− y)dy + (y + x+ 1)dx = 0
Since P (x, y) = y + x+ 1 and Q(x, y) = x− y, you can easily verify that ∂P/∂y =

∂Q/∂x = 1, and thus, this is an exact equation. Now, we have to find a function
F (x, y), such that P = ∂F/∂x and Q = ∂F/∂y. We can write,

F (x, y) =

�
P (x, y)dx =

�
(y + x+ 1)dx = xy +

x2

2
+ x+ f(y).

Thus, we have to find f(y) to get the solution. Using the other equation, we can
write,

x− y =
∂F

∂y
= x+ f �(y) ⇒ f(y) = −y2

2
+ c1

Thus, F (x, y) = xy + x2/2 + x − y2/2 + c1 and the general solution for the given
differential equation is

F (x, y) = c2 ⇒ xy +
x2

2
+ x− y2

2
= c

where the constant c replaces both c1 and c2.

Example 4: Solve (y2 + 3xy3)dx+ (1− xy)dy = 0.
Since P (x, y) = y2+3xy3 and ∂P/∂y = 2y+9xy2; Q(x, y) = 1−xy and ∂P/∂x = −y,

the equation is not an exact equation. We are going to use an integrating factor
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

U(x, y) = xmyn . Then, the above equation is converted to

(xmyn+2 + 3xm+1yn+3)dx+ (xmyn − xm+1yn+1)dy = 0.

For the above equation to be exact, we must have,

(n+ 2)xmyn+1 + 3(n+ 3)xm+1yn+2 = mxm−1yn − (m+ 1)xmyn+1.

Rearranging, we can write,

[(n+ 2) + (m+ 1)]xmyn+1 + 3(n+ 3)xm+1yn+2 −mxm−1yn = 0.

Since the right hand side is zero, every coefficient must be equal to zero,

(n+ 2) + (m+ 1) = 0,

(n+ 3) = 0,

m = 0.

Thus, the solution is m = 0 and n = −3 and the integrating factor is U(x, y) = y−3.
Given equation is converted to,

y2 + 3xy3

y3� �� �
P1(x,y)

dx+
1− xy

y3� �� �
Q1(x,y)

dy = 0.

We can easily verify that the above equation is exact, ∂P1/∂y = ∂Q1/∂x = −1/y2.
Now, we have to find a function F (x, y), such that P1 = ∂F/∂x and Q1 = ∂F/∂y. We
can write,

F (x, y) =

�
P1(x, y)dx =

� �
1

y
+ 3x

�
dx =

x

y
+

3x2

2
+ f(y).

Thus, we have to find f(y) to get the solution. Using the other equation, we can
write,

1

y3
− x

y2
=

∂F

∂y
= − x

y2
+ f �(y) ⇒ f(y) = − 1

2y2
+ c1

Thus, F (x, y) = x/y + 3x2/2 − 1/2y2 + c1 and the general solution for the given
differential equation is

F (x, y) = c2 ⇒
x

y
+

3x2

2
− 1

2y2
= c

where the constant c replaces both c1 and c2.

Example 5: Solve (3xy − y2)dx+ x(x− y)dy = 0.
Since P (x, y) = (3xy − y2) and ∂P/∂y = 3x − 2y; Q(x, y) = x(x − y) and ∂Q/∂x =
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

2x− y, the given equation is not an exact equation. We further see that,

1

Q

�
∂P

∂y
− ∂Q

∂x

�
=

1

x
= f(x).

When such condition (left hand side is a function of x only) is satisfied, I claim

that the integrating factor is U(x, y) = U(x) = e
�
f(x)dx = eI (see problem set). In

this particular case, the integrating factor is,

U(x) = e
�
dx/x = elnx = x. (5.7)

Multiplying the given equation with the integrating factor, we obtain,

(3x2y − y2x)� �� �
P1(x,y)

dx+ (x3 − x2y)� �� �
Q1(x,y)

dy = 0. (5.8)

We can verify that, the above equation is exact as ∂P1/∂y = ∂Q1/∂x = (3x2 − 2xy).
Now, we have to find a function F (x, y), such that P1 = ∂F/∂x and Q1 = ∂F/∂y. We
can write,

F (x, y) =

�
P1(x, y)dx =

�
(3x2y − y2x)dx = x3y − y2x2

2
+ f(y).

Thus, we have to find f(y) to get the solution. Using the other equation, we can
write,

x3 − x2y =
∂F

∂y
= x3 − x2y + f �(y) ⇒ f(y) = c1

Thus, F (x, y) = x3y − y2x2

2 + c1 and the general solution for the given differential
equation is

F (x, y) = c2 ⇒ x3y − y2x2

2
= c

where the constant c replaces both c1 and c2.

5.2.3 Homogeneous equations (optional)

A first order differential equation of the form

P (x, y)dx+Q(x, y)dy = 0, (5.9)

is homogeneous if both P and Q are homogeneous functions of the same degree.2

Note that, a nth degree of homogeneous function of x and y can be expressed as

2Homogeneous function has multiplicative scaling behavior. That means, if we multiply each
variable by same factor, then the function is multiplied by some integral power of this factor. For
example, f(x, y) is a homogeneous function of degree n, if f(tx, ty) = tnf(x, y). Example: x2 + xy +
y2+y3/x is a homogeneous function of degree 2. Example: x2y+x4/y+y3 is a homogeneous function
of degree 3. Example: x2y + xy + x is not a homogeneous function.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

xnf(y/x).3 Since P and Q are homogeneous functions of same degree, the factor
xn gets canceled and we can write,

y� =
dy

dx
= −P (x, y)

Q(x, y)
= f

�y
x

�
. (5.10)

Thus, a homogeneous can always be expressed in the form of y� = f(y/x). Now,
we can solve this equation by substituting y = xv, which gives us a separable
equation in x and v.4 Some examples are given below.

Example 1: Solve x2dy − (3y2 + xy)dx = 0.
Q(x, y) = x2 and P (x, y) = −(3y2 + xy) = −x2

�
3y2

x2 + y
x

�
are homogeneous func-

tions of degree 2. We can write,

dy

dx
= −P (x, y)

Q(x, y)
=

3y2

x2
+

y

x
= f

�y
x

�
.

In order to solve the above equation, we substitute, y = xv and get a separable
equation in x and v,

v + x
dv

dx
= 3v2 + v ⇒ dv

3v2
=

dx

x
.

Integrating both sides, we get

− 1

3v
= ln |x|+ ln |c| ⇒ x

y
= −3 ln |cx| ⇒ y =

−x

3 ln |xc|

In order to verify, you can differentiate the last equation and check whether you
get the differential equation given in the question.

Example 2: Solve x2dy + (y2 − xy)dx = 0.
Q(x, y) = x2 and P (x, y) = y2 − xy = x2

�
y2

x2 − y
x

�
are homogeneous functions of

degree 2. We can write,

dy

dx
= −P (x, y)

Q(x, y)
=

y

x
− y2

x2
= f

�y
x

�
.

In order to solve the above equation, we substitute, y = xv and get a separable
equation in x and v,

v + x
dv

dx
= v − v2 ⇒ −dv

v2
=

dx

x
.

3Example: a homogeneous function of degree 2, x2+xy can be expressed as x2(1+y/x) = x2f(y/x).
4There is an alternate method of solving homogeneous differential equations. We can prove that

1/(Px+Qy) is an integrating factor for Eq. 5.9.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

Integrating both sides, we get

1

v
= ln |x|+ ln |c| ⇒ x

y
= ln |cx| ⇒ y =

x

ln |cx| (5.11)

Example 3: Solve (y2 − xy)dx+ (x2 + xy)dy = 0.
P (x, y) = (y2 − xy) = x2(y2/x2 − y/x) and Q(x, y) = (x2 + xy) = x2(1 + y/x) are

homogeneous functions of degree 2. We can write,

dy

dx
= −P (x, y)

Q(x, y)
=

x2(y/x− y2/x2)

x2(1 + y/x)
=

(y/x− y2/x2)

(1 + y/x)
= f

�y
x

�
.

In order to solve the above equation, we substitute, y = xv and get a separable
equation in x and v,

v + x
dv

dx
=

v − v2

1 + v
⇒ x

dv

dx
=

−2v2

1 + v
⇒

�
− 1

v2
− 1

v

�
dv = 2

dx

x
.

Integrating both sides, we get

1

v
− ln |v| = ln |cx2| ⇒ x

y
= ln |cxy| ⇒ ex/y = cxy .

5.2.4 Linear first order equations

A linear first order equation can be written in the form of

y� + P (x)y = Q(x), (5.12)

where P and Q are functions of x (or can be constants). If Q = 0, then we can
easily separate the variables and write,

dy

y
= −Pdx ⇒ ln y = −

�
Pdx+ c. (5.13)

Assuming I =
�
Pdx (equivalently, dI/dx = P ), we can write the solution in the

form
y = ce−I . (5.14)

Now, let us solve for non-zero Q. In order to do this, first let us calculate the first
derivative of yeI :

d

dx
(yeI) = y�eI + yeI

dI

dx
= y�eI + yeIP = eI(y� + yP ) = eIQ. (5.15)

Since both eI and Q are function of x only, we can integrate to get,5

yeI =

�
eIQdx+ c ⇒ y = e−I

�
eIQdx

� �� �
yp

+ e−Ic����
yc

, where I =

�
Pdx . (5.16)

5There is an alternate way to solve linear equations, to be shown in the examples.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

Note that, we have only one arbitrary constant, as expected for a linear first order
equation. Also, yc is the solution of Eq. 5.12 with Q = 0 and yp is known as the
particular solution.67 Some examples are given below.

Example 1: Solve y� − y
x = 1.

Method 1:
This is a linear equation, with P (x) = −1/x and Q(x) = 1. Thus,

I =

�
P (x)dx = −

�
1

x
dx = − lnx ⇒ eI = e− lnx =

1

x

yeI =

�
eIQ(x)dx+ ln c ⇒ y

x
=

�
1

x
dx+ ln c = ln(cx) ⇒ y = x ln(xc)

Method 2:
Let y = uv and dy

dx = u dv
dx + v du

dx . Thus, the above equation is converted to

u
dv

dx
+ v

du

dx
− uv

x
= 1 ⇒ u

dv

dx
+ v

�
du

dx
− u

x

�

� �� �
=0

= 1.

Setting the term involving v equal to zero, we get,

du

dx
=

u

x
⇒ lnu = ln(cx) ⇒ u = c1x.

Let us replace u = c1x in the equation above (term involving v is still equal to zero),

c1x
dv

dx
= 1 ⇒ c1v = ln(cx).

Finally, using y = uv, we get,

y = c1x
1

c1
ln(cx) ⇒ y = x ln(cx) .

Example 2: Solve y� + y = ex.
Method 1:
This is a linear equation with P (x) = 1 and Q(x) = ex. Thus,

I =

�
Pdx = x ⇒ eI = ex.

yeI =

�
eIQdx+ c =

�
e2xdx+ c =

e2x

2
+ c ⇒ y =

ex

2
+ ce−x .

Method 2:
6From Eq. 5.16, ypeI =

�
eIQdx and yce

I = c, such that (yp + yc)e
I = yeI =

�
eIQdx+ c.

7Note that, the general solution of Eq. 5.12, i.e., y = yp + yc is not unique.
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5.2. FIRST ORDER DIFFERENTIAL EQUATIONS

Let y = uv and dy
dx = u dv

dx + v du
dx . Thus, the above equation is converted to

u
dv

dx
+ v

du

dx
+ uv = ex ⇒ u

dv

dx
+ v

�
du

dx
+ u

�

� �� �
=0

= ex.

Setting the term involving v equal to zero, we get,

du

dx
= −u ⇒ lnu = −x+ c1 ⇒ u = c2e

−x.

Let us replace u = c2e
−x in the equation above (term involving v is still equal to

zero),

c2e
−x dv

dx
= ex ⇒ c2v =

e2x

2
+ c3.

Finally, using y = uv, we get,

y = c2e
−x

�
e2x

2c2
+

c3
c2

�
⇒ y =

�
ex

2
+ ce−x

�
.

Example 3: Solve x2y� + 3xy = 1.
Method 1:
We can rewrite the given equation as y� + 3

xy = 1
x2 . This is a linear equation

with P (x) = 3/x and Q(x) = 1/x2. Thus,

I =

�
Pdx = 3 lnx ⇒ eI = x3.

yeI =

�
eIQdx+ c =

�
xdx+ c =

x2

2
+ c ⇒ y =

1

2x
+ cx−3 .

Method 2:
Let y = uv and dy

dx = u dv
dx + v du

dx . Thus, the above equation is converted to

u
dv

dx
+ v

du

dx
+

3uv

x
=

1

x2
⇒ u

dv

dx
+ v

�
du

dx
+

3u

x

�

� �� �
=0

=
1

x2
.

Setting the term involving v equal to zero, we get,

du

dx
= −3u

x
⇒ lnu = −3 lnx+ ln c1 ⇒ u = c1x

−3.

Let us replace u = c1x
−3 in the equation above (term involving v is still equal to

zero),

c1x
−3 dv

dx
=

1

x2
⇒ c1v =

x2

2
+ c2.
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Finally, using y = uv, we get,

y = c1x
−3

�
x2

2c1
+

c2
c1

�
⇒ 1

2x
+ cx−3 .

5.2.5 Bernoulli equation

Bernoulli equations can be written in the form of

y� + Py = Qyn, (5.17)

where P and Q are functions of x (or can be constants). Clearly, it is not a linear
equation, but can easily be converted to a linear equation, by making a change of
variable,

z = y1−n ⇒ z� = (1− n)y−ny�. (5.18)

Multiplying Eq. 5.17 with (1− n)y−n and then making the above substitution, we
get

(1− n)y−ny� + (1− n)Py1−n = (1− n)Q (5.19)

z� + (1− n)Pz = (1− n)Q .

Thus, we have converted the non-linear equation 5.17 to a linear equation and
we already know how to solve this. Some examples are given below.

Example 1: Solve y� + y = xy2/3.
Substitute z = y1/3 ⇒ z� = 1

3y
−2/3y�. Multiplying both sides of the given equation

with 1
3y

−2/3, we get,

1

3
y−2/3y� +

1

3
y1/3 =

1

3
x ⇒ z� +

1

3
z =

1

3
x.

Thus, we have converted the non-linear equation to a linear equation in x and z,
with P (x) = 1/3 and Q(x) = x/3. Thus,

I =

�
Pdx =

x

3
⇒ eI = ex/3

zeI =

�
eIQdx+ c =

�
ex/3

x

3
dx+ c = xex/3 − 3ex/3 + c ⇒ z = x− 3 + ce−x/3.

Replacing z = y1/3, the answer is y1/3 = x− 3 + ce−x/3 .

Example 2: Solve y� + 1
xy = 2x3/2y1/2.

Substitute z = y1/2 ⇒ z� = 1
2y

−1/2y�. Multiplying both sides of the given equation
with 1

2y
−1/2, we get,

1

2
y−1/2y� +

1

2x
y1/2 = x3/2 ⇒ z� +

1

2x
z = x3/2.
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Thus, we have converted the non-linear equation to a linear equation in x and z,
with P (x) = 1/2x and Q(x) = x3/2. Thus,

I =

�
Pdx =

1

2
lnx ⇒ eI = x1/2

zeI =

�
eIQdx+ c =

�
x1/2x3/2dx+ c =

x3

3
+ c ⇒ z =

x5/2

3
+ cx−1/2

Replacing z = y1/2, the answer is y1/2 =
x5/2

3
+ cx−1/2 .

5.2.6 Exercise

Separable equations (optional)

1. Solve (1 + y2)dx+ xydy = 0, given the boundary condition y = 0, when x = 5.

Answer: x2(1 + y2) = c, c = 25

2. Solve xy� − xy = y, given the boundary condition y = 1, when x = 1.

Answer: y = cxex, where c = 1/e

3. Solve (y−x2y)dy+(2xy2+x)dx = 0, given the boundary condition y = 0, when
x =

√
2.

Answer: (2y2 + 1) = c(x2 − 1)2, where c = 1

4. Solve ydy + (xy2 − 8x)dx = 0, given the boundary condition y = 3, when x = 1.

Answer: y2 = 8 + ec−x2
, where c = 1

5. Solve y� = cos(x+ y). [Hint: substitute u = x+ y]

Answer: tan 1
2(x+ y) = x+ c

6. Solve xy� + y = exy. [Hint: substitute u = xy]

Answer: y = −x−1 ln(c− x)

Exact equations

7. (cosx cos y + sin2 x)dx− (sinx sin y + cos2 y)dy = 0.

Answer: 4 sinx cos y + 2x− sin 2x− 2y − sin 2y = c

8. (1 + y2)dx+ xydy = 0.

Answer: x2

2 + x2y2

2 + c = 0

9. (x− cos y)dx− sin ydy = 0.

Answer: e−x(cos y − x− 1) = c

10. (xy2 − 2y3)dx+ (3− 2xy2)dy = 0.

Answer: xexy + c = 0
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11. ydx+ (x2 + y2 − x)dy = 0.

Answer: tan−1 x
y + y = c

12. (x− 1)y� + y − x−2 + 2x−3 = 0.

Answer: y2 = −1/x2 + c/(x− 1)

13. For an inexact equation, P (x, y)dx+Q(x, y)dy = 0, it is given that 1
Q

�
∂P
∂y − ∂Q

∂x

�
=

f(x). Prove that eI is an integrating factor for the given equation, where I =�
f(x)dx. [Hint: note that dI/dx = f(x). You have to prove that, eIP (x, y)dx+

eIQ(x, y)dy = 0 is an exact differential equation.]

14. For an inexact equation, P (x, y)dx+Q(x, y)dy = 0, it is given that 1
P

�
∂Q
∂x − ∂P

∂y

�
=

f(y). Prove that eI is an integrating factor for the given equation, where I =�
f(y)dy. [Hint: note that dI/dy = f(y). You have to prove that, eIP (x, y)dx +

eIQ(x, y)dy = 0 is an exact differential equation.]

Homogeneous equations (optional)

15. Check whether following functions are homogeneous and if yes, find the
degree.

(a) 4x2 + y2

(b) x2 − 5xy + y3/x

(c) xy sin(x/y)

(d) (y4 − x3y)/x− xy2 sin(x/y)

(e) x sin(xy)

(f) x2y3 + x5 ln(y/x)− y6/
�

x2 + y2

(g) x3 + x2y + xy2 + y3

(h) x2 + y

(i) x2 + xy + y3

(j) x+ cos y

16. Solve ydy = (−x+
�
x2 + y2)dx.

Answer: y2 = 2cx+ c2

17. Solve xydx+ (y2 − x2)dy = 0.

Answer: y2 = ce−x2/y2

18. Solve (x2 + y2)dx− xydy = 0.

Answer: y = ±
�

2 ln(cx).

19. Solve (y − x)dx+ (x+ y)dy = 0.

Answer: y2 + 2xy − x2 = c, which can be further written as y = ±
√
2x2 + c− x.
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20. Solve y� = y/x− tan(y/x).

Answer: x sin(y/x) = c

21. Prove that, 1/(Px + Qy) is an integrating factor for Eq. 5.9. [Hint: you have
to prove that (Pdx + Qdy)/(Px + Qy) is an exact differential, provided P and
Q are homogeneous functions of same degree.]

Linear equations

22. Prove that eI is the integrating factor for Eq. 5.12, i.e., eI(Py−Q)dx+eIdy = 0
is an exact equation. Following the technique of solving an exact equation,
prove that yeI =

�
eIQdx+ c.

23. Solve dy + (2xy − xe−x2
)dx = 0.

Answer: y = x2

2 e
−x2

+ ce−x2

24. Solve 2xy� + y = 2x5/2.

Answer: y = 1
3x

5/2 + cx−1/2

25. Solve y� cosx+ y = cos2 x.

Answer: y(secx+ tanx) = x− cosx+ c

26. Solve y� + y√
x2+1

= 1
(x+

√
x2+1)

.

Answer: y = (x+c)

x+
√
x2+1

Bernoulli equations

27. 3xy2y� + 3y3 = 1.

Answer: y3 = 1
3 + cx−3

28. yy� − 2y2 cotx = sinx cosx.

Answer: y2 = sin2 x(−1 + c sin2 x)

5.3 Second order linear differential equations

Differential equations of second order contain only first and second derivative of
y, i.e., y� and y��. We are going to discuss two types of second order equations in
this section.

5.3.1 Constant coefficients and zero right hand side

Equations of the form
a2y

�� + a1y
� + a0y = 0, (5.20)
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where a2, a1, a0 are constants, are known as homogeneous equations. Expressing
D = d/dx, the above equation is converted to

(a2D
2 + a1D + a0)� �� �

auxiliary equation

y = 0. (5.21)

We could also have substituted y = ecx in Eq. 5.20 and get the same auxiliary
equation,

a2c
2 + a1c+ a0 = 0. (5.22)

Now, let us consider three possible cases.

Case 1: auxiliary equation having two distinct real roots

Expressing the auxiliary equation as (D− c1)(D− c2),8 we can rewrite Eq. 5.21 as,

(D − c1)(D − c2)y = 0. (5.23)

Thus, in order to solve Eq. 5.21, we need to solve two first order equations,

(D − c1)y = 0 & (D − c2)y = 0. (5.24)

These are separable equations, with solutions y1 = ec1x and y2 = ec2x and the
general solution is a linear combination of the two.9 Thus, if c1 and c2 are two
roots of the auxiliary equation, the general solution is,

y = Aec1x +Bec2x . (5.25)

Case 2: auxiliary equation having complex conjugate roots

Let the roots of the auxiliary equation be, c1 = α+ιβ and c2 = α−ιβ. Thus, we have
two solutions: y1 = e(α+ιβ)x and y2 = e(α−ιβ)x, which are also complex conjugates of
each other. By taking linear combination, we get a complex solution of the form,

y = eαx
�
Aeιβx +Be−ιβx

�
, (5.26)

where A and B are arbitrary complex constants. Since e±ιβx = cosβx± ι sinβx, we
can rewrite the above equation as, y = eαx(C1 cosβx+C2 sinβx), where C1 = (A+B)
and C2 = ι(A − B). Note that, by selecting appropriate constants, we can get
real, as well as imaginary solutions. For example, if we take A = B = 1/2, we
get a real solution y = eαx cosβx. Similarly, if we take A = 1/2ι and B = −1/2ι,
we get another real solution y = eαx sinβx. Interestingly, since cosβx and sinβx
are linearly independent functions, we can get a series of real solutions by taking

8c1 and c2 are the roots of the auxiliary equation a2D
2 + a1D + a0 = 0, given by

−a1±
√

a2
1−4a2a0

2a2
.

9We can do this as two solutions are linearly independent. Two functions f1(x) and f2(x) are lin-

early independent if the Wronskian is not equal to zero. Wronskian is given by: W =

����
f1(x) f2(x)
f �
1(x) f �

2(x)

����.
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linear combination of them, i.e.,

y = eαx(C1 cosβx+ C2 sinβx) , (5.27)

where C1 and C2 are real arbitrary constants. We can further express this as,

y = Ceαx sin(βx+ γ) , (5.28)

where C and γ are arbitrary constants.

Case 3: auxiliary equation having same roots

There exist one more possibility, that both the roots of the auxiliary equation are
same. Then, Eq. 5.20 takes the following form:

(D − c) (D − c)y� �� �
u

= 0. (5.29)

Obviously, solving (D − c)y = 0, we get one solution to be y = Aecx. In order to get
the other solution, we note that (D − c)y is going to be some function u(x), such
that we can write the above equation as,

(D − c)u = 0 ⇒ u = Aecx. (5.30)

Finally, we can solve for y from,

(D − c)y = Aecx ⇒ y� − cy = Aecx. (5.31)

This is a linear first order equation, having non-zero right hand side, with P = −c
and Q = Aecx. The solution is given by Eq. 5.16, where I =

�
Pdx = −cx. We can

write the solution as,

yeI =

�
eIQdx =

�
e−cxBecxdx = Ax+B ⇒ y = (Ax+B)ecx . (5.32)

Example 1: Simple harmonic motion.
Such periodic or oscillatory motion happens when the restoring force is pro-

portional to the displacement and acts in the opposite direction. There are sev-
eral examples, like spring-mass system, pendulum, vibration of a structure (like
a bridge), vibration of atoms in a crystal etc.

Let us consider a spring-mass system. Assuming no friction, we can write the
Newton’s second law of motion as md2x

dt2
= −kx = −mω2x.10 Thus, we have to solve

a differential equation of the form d2x
dt2

+ ω2x = 0. Writing D = d/dt, we get,

(D2 + ω2)x = 0.

10Potential energy of a spring is given by U(x) = 1
2
kx2 = 1

2
mω2x2 and the force = − dU

dx
. Such a

force is known as conservative force and we already know that work done is independent of the
path in such a force field.
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Thus, the auxiliary equation we have to solve is,

D2 + ω2 = 0,

and the roots are D = ±ιω. Thus, the general solution can be expressed in any of
the three forms given in Eq. 5.26, Eq. 5.27 or Eq. 5.28,

x(t) = Aeιωt +Be−ιωt,

x(t) = C1 cosωt+ C2 sinωt,

x(t) = C sin(ωt+ γ).

Example 2: Damped harmonic motion.
If energy of an oscillator is dissipated, leading to gradual decrease of amplitude

or preventing it from oscillating, such a motion is termed as damped harmonic
motion. Damping happens because of various different reasons like presence of
friction or viscous drag etc.11

Again, let us consider a spring-mass system. The damping force (due to fric-
tion) is linearly dependent on velocity and it acts opposite to the direction of the
velocity, i.e., Fd = −cdxdt . Thus, the equation of motion is given by,

m
d2x

dt2
= −kx− c

dx

dt
⇒ m

d2x

dt2
+ c

dx

dt
+ kx = 0 .

The auxiliary equation is mD2 + cD + k = 0, having roots D = −c±
√
c2−4mk
2m =

− c
2m ±

�
c2−4mk
4m2 = −γ ±

�
γ2 − ω2. Note that, γ = c

2m is known as the damping
coefficient and the reason is going to be obvious when we discuss the solutions of
the equation of motion. Let us discuss three possible cases.

Case 1: Overdamped oscillator: c2 − 4mk > 0
In this case, the roots of the auxiliary equation are −γ±β, where β =

�
γ2 − ω2.

The general solution is given by x(t) = e−γt(Aeβt +Be−βt).

Case 2: Critically damped oscillator: c2 − 4mk = 0
In this case, both the roots are equal to γ. Thus, the general solution is x(t) =

e−γt(At+B).

Case 3: Underdamped oscillator: c2 − 4mk < 0
In this case, we have complex roots −γ ± ιβ, where β =

�
γ2 − ω2. The general

solution is given by x(t) = e−γt(C1 cosβt+ C2 sinβt).
Displacement is plotted as a function of time for all three cases in Fig. 5.1.

Note that, there are other systems for which we need to solve a similar differential
equation and not surprisingly, we will get similar solutions. One famous example

11Consider a child playing on a swing. If we do not apply any force, the amplitude of oscillation
of the swing decreases gradually.
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Figure 5.1: Displacement as a function of time for damped harmonic motion.

s

sF

(a) (b)

Figure 5.2: Different systems having similar differential equation: (a) spring-mass
and (b) RLC circuit connected in series. Images are take from Wikipedia.
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is a RLC circuit, where the components are connected in series (see Fig. 5.2). In
this case, the governing equation is12

L
d2I

dt2
+R

dI

dt
+

I

C
=

dV

dt
,

and if we set right hand side equal to zero, we solve an equation similar to damped
harmonic motion. In this case, resistance has a similar role as played by friction
in case of spring-mass system.

5.3.2 Exercise

1. Re-derive Eq. 5.25: write auxiliary equation (D − c1) (D − c2)y� �� �
u(x)

= 0. (D − c2)y

must be some function of x, say u(x). Now, first solve for u(x) from (D−c1)u =
0. Then, solve for (D − c2)y = u and check whether you get the same answer
as Eq. 5.25.

2. Consider the solution in case of overdamped harmonic motion. Can β and γ
take any value for the general solution to be stable [i.e., x(t) does not go to
±∞ with increasing time] or there is some restriction?

Solve the differential equations

3. y�� + y� − 2y = 0

Answer: y = Aex +Be−2x

4. y�� + 9y = 0

Answer: y = Ae3ιx +Be−3ιx

5. y�� − 2y� + y = 0

Answer: y = (Ax+B)ex

6. y�� − 5y� + 6y = 0

Answer: y = Ae3x +Be2x

7. y�� − 4y� + 13y = 0

Answer: y = Ae2x sin(2x+ γ)

8. 4y�� + 12y� + 9y = 0

Answer: y = (A+Bx)e−3x/2

12We know that V = RI, V = Q/C, V = L(dI/dt). Combining, we get L dI
dt

+ RI + Q
C

= V . Taking

time derivative and noting that I = dQ
dt

, we get L d2I
dt2

+R dI
dt

+ I
C

= dV
dt

.
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Check for linear independence (by calculating Wronskian)

9. e−x, e−4x

10. eax, ebx, a �= b (a, b real or imaginary)

11. eax, xeax

12. sinβx, cosβx

13. 1, x, x2

14. eax, xeax, x2eax

5.3.3 Constant coefficients and non-zero right hand side

Equations of the form
a2y

�� + a1y
� + a0y = f(x), (5.33)

where a2, a1, a0 are constants, are known as inhomogeneous equations. The func-
tion f(x) is often termed as a forcing function, which represents an applied force
or emf (electromotive force). If we set the right hand side equal to zero, we get a
complementary function yc, which is the solution of the homogeneous equation.
For non-zero right hand side, we get a particular solution yp and the general solu-
tion is given by,

y = yc + yp. (5.34)

We already know how to solve for yc. Let us learn a few tricks to solve for yp.

Method 1: Via inspection

Let us consider the equation y��+y�−2y = −3. You can check that the complemen-
tary function is yc = Aex + Be−2x. Via inspection, it is easy to find the particular
solution to be yp = 3/2 and the general solution is y = Aex +Be−2x + 3/2.

Method 2: Solve two successive first order linear equations

Instead of a constant, if the right hand side is some function, then method of
inspection to find yp is most likely going to fail. For example, let us consider the
equation y�� + y� − 2y = ex. The complimentary function is same as the previous
problem. First we write the differential equation as,

(D − 1) (D + 2)y� �� �
u

= ex.

Now, let (D + 2)y = u, such that we get a first order linear differential equation,

(D − 1)u = ex ⇒ u� − u = ex,
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with P = −1 and Q = ex. The solution is,

I =

�
Pdx = −x

ueI =

�
eIQdx+ c =

�
dx+ c = x+ c ⇒ u = xex + cex.

Thus, the first order linear differential equation for y is,

(D + 2)y = xex + cex ⇒ y� + 2y = xex + cex,

where P = 2 and Q = xex + cex. The solution is,

I =

�
Pdx = 2x

yeI =

�
eIQdx+ c1 =

�
(xe3x + ce3x)dx+ c1 =

1

3
xe3x − 1

9
e3x +

1

3
ce3x + c1

y =
1

3
xex − 1

9
ex

� �� �
yp

+
1

3
cex + c1e

−2x

� �� �
yc

.

I would like to draw attention to the fact that, we have obtained yc from the
arbitrary constants at every step. If we omit the arbitrary constants, we can
quickly get the particular solution. Finally, we can beautify the final answer by
writing 1

3c− 1
9 = c2, such that the general solution is y = 1

3xe
x + c2e

x + c1e
−2x.

5.3.4 Exercise

1. y�� − 4y = 10

Answer: y = Ae2x +Be−2x − 5
2

2. y�� + y� − 2y = e2x

Answer: Aex +Be−2x + 1
4e

2x

3. y�� + y = 2ex

Answer: y = Aeιx +Be−ιx + ex

4. y�� − y� − 2y = 3e2x

Answer: y = Ae−x +Be2x + xe2x

5. y�� + 2y� + y = 2e−x

Answer: y = (Ax+B + x2)e−x

5.4 Coupled first order differential equations

This I add as an application of eigenvalues and eigenvectors. Let y1(t) and y2(t)
are both functions of t, having first derivatives y�1 = dy1/dt and y�1 = dy2/dt. We
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have to solve for y1 and y2 by solving two differential equations, given by

y�1 = ay1 + by2, (5.35)

y�2 = cy1 + dy2.

Note that, we can express the above equation in the matrix form as,
�
y�1
y�2

�
=

�
a b
c d

��
y1
y2

�
. (5.36)

Two column vectors �y� and �y are related by the matrix A, such that �y� = A�y. Now,
let us assume that �y = B�x, such that �y� = AB�x and we get,

B−1�y� = B−1AB�x ⇒ �x� = B−1AB�x. (5.37)

If matrix B is made of eigenvectors of A, then we know that B−1AB is a diagonal
matrix D, such that

�x� = D�x . (5.38)

It is easy to solve for the vector �x =

�
x1
x2

�
from the above equation, because D is a

diagonal matrix, made of eigenvalues of A, say λ1 and λ2. Thus, we solve for

x�1 = λ1x1 ⇒ x1 = c1e
λ1t, (5.39)

x�2 = λ2x2 ⇒ x2 = c2e
λ2t.

Finally, we use �y = B�x to get the solution for y1(t) and y2(t).
Let us solve for,

y�1 = 3y1 + 2y2, (5.40)

y�2 = 6y1 − y2.

The eigenvalues and eigenvectors for A =

�
3 2
6 −1

�
are,

λ1 = −3,

�
1
−3

�
& λ2 = 5,

�
1
1

�
. (5.41)

Let us construct the matrices from the eigenvalues and eigenvectors: D =

�
−3 0
0 5

�

and B =

�
1 1
−3 1

�
. Now, using Eq. 5.38, we can write,

�
x�1
x�2

�
=

�
−3 0
0 5

��
x1
x2

�
(5.42)

and the solutions are, x1 = c1e
−3t and x2 = c2e

5t. Now, we get the final solution
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from �y = B�x ⇒
�
y1
y2

�
=

�
1 1
−3 1

��
x1
x2

�
,

y1(t) = c1e
−3t + c2e

5t, (5.43)

y2(t) = −3c1e
−3t + c2e

5t.

5.4.1 Exercise

1. Solve y�1 = y1 + y2, y
�
2 = 4y1 + y2.

Answer: y1 = c1e
3t + c2e

−t, y2 = 2c1e
3t − 2c2e

−t

5.5 Converting higher order to 1st order equations

We can convert a linear differential equation of order n to n first order linear
differential equations and then use the above technique to get a solution. Let us
solve,

y�� + a1y
� + a0y = 0 ⇒ y�� = −a0y − a1y

�. (5.44)

We do the following change of variables,

x1 = y & x2 = y�, (5.45)

x�1 = y� = x2 & x�2 = y��.

Thus, we can write two coupled first order linear equation,

x�1 = 0x1 + 1x2, (5.46)

x�2 = −a0x1 − a1x2.

Thus, we have converted a 2nd order equation to two coupled 1st order equations,
which we can solve following the method shown in the previous section. We can
do it for even higher order equations, like a 3rd order equation,

y��� + a2y
�� + a1y

� + a0y = 0 ⇒ y��� = −a0y − a1y
� − a2y

��. (5.47)

Using the following substitution,

x1 = y, x2 = y�, x3 = y��, (5.48)

the above equation can be converted to three 1st order equations,

x�1 = 0x1 + 1x2 + 0x3, (5.49)

x�2 = 0x1 + 0x2 + 1x3,

x�3 = −a0x1 − a1x2 − a2x3.

Let us see an example, where we solve the following 2nd order linear equation
using this method,

y�� + 5y1 − 6y = 0. (5.50)
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Using the substitution x1 = y, x2 = y�, we get two 1st order equations to solve,

x�1 = 0 + x2, (5.51)

x�2 = 6x1 − 5x2.

The eigenvalues and eigenvectors for matrix A =

�
0 1
6 −5

�
are,

λ1 = 1,

�
1
1

�
& λ2 = −6,

�
1
−6

�
. (5.52)

The D matrix is given by D =

�
1 0
0 −6

�
and the B matrix is given by, B =

�
1 1
1 −6

�
.

Using Eq. 5.38 we can write
�
z�1
z�2

�
=

�
1 0
0 −6

��
z1
z2

�
, (5.53)

and the solutions are z1 = c1e
t and z2 = c2e

−6t. Thus, the solution for x1 and x2
are, �

x1
x2

�
=

�
1 1
1 −6

��
z1
z2

�
. (5.54)

Now, since y = x1, we write the final solution as, y = c1e
t + c2e

−6t.

5.5.1 Exercise

1. y�� + y� − 2y = 0

Answer: y = c1e
t + c2e

−2t
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