Networking Basics, Layering

Bhaskaran Raman

Department of CSE, IIT Kanpur

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Communication: what and how?

- Communication: The exchange of thoughts, messages, or information, as by speech, signals, writing, or behavior.
- Requirements for communication
 - Medium + Energy, Protocol

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Communication networks

- Before the electronic age
 - Using doves/pigeons
 - Postal system
- Telegraph
- Telephone network
- Internet
- Cellular/Wireless

Designing a Protocol

- What information to send?
- When to send?
 - Define possible message sequences
- How to send?
 - Depends on the network available

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Metrics for Protocol/Network Design

- Efficiency
 - Time, cost, energy, etc.
 - Throughput versus latency
- Reliability
- Security

Several Levels of Issues

- How do two computers communicate on a single link?
- How do several computers share a common medium?
- The notion of a network: when not all computers are connected to each other directly

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Communication on a Single Link

- Depends on the physical medium in use
 - Ethernet: converted to electrical signals
 - SONET: optical signals
 - Satellite, WLAN: RF modulation in some frequency
- This is domain of ECE communications

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Sharing a Medium

• Example: ethernet

- Notion of Medium Access Control (MAC) protocol
- Possibilities: central control vs. distributed control

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Medium Access Control (MAC)

- Time-division multiple access (TDMA)
 - Satellite link, T1, SONET
- CSMA/CD
 - Ethernet
- CSMA/CA (RTS/CTS optional)
 - Wireless LAN
- Other possibilities: FDMA, CDMA
 - GSM uses FDMA + TDMA + central control

Beyond Direct Communication

- Notion of routing
 - Centralized vs. distributed routing
- Distributed routing:
 - Source routing vs. destination-based routing
- Destination-based routing:
 - Each "node" has a routing table
 - Send packets to node 5 via node 2
 - Send packets to node 6 via node 3

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

History of the Internet

- 1961-62: Packet-switching as a concept
- 1969: Four host computers on ARPANET
- 1972: E-mail application launched
- Network Control Protocol (NCP) used in **ARPANET**
- 1980s: LANs, PCs, Workstations
- Until 1985: Internet used by researchers/developers

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Inter-Network (Internet)

- Connect different "networks"
- Pigeon-powered Internet takes flight

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

History (continued)

- Networks from DoE, NASA, NSF, AT&T
- NSENET backbone was created
- Privatization: 1985-1995
 - 6 nodes (56kbps links) to 21 nodes (45Mbps links)
- Steady exponential growth for 15 years
 - In bandwidth, number of hosts, total traffic, etc.
- http://www.isc.org/ds/

Fig. 2. Three networks interconnected by two gateways. Source: [CK74]

 Sources of variability: addressing, MTU, delivery guarantees, delay/bandwidth, routing

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Internet Design Goals

- 1. Communication in the presence of failures
- 2. Multiple types of service
- 3.Accommodate different networks
- 4.Distributed management
- 5 Cost effective
- 6.Dynamic host attachment, removal
- 7. Resource accounting

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Internet Service Semantics

- Best-effort
- Packets may be:
 - Dropped
 - Delayed
 - Duplicated
 - Reordered
- Packets will NOT be created

OSI Layering

- What is layering?
 - "Structuring technique which permits the network... to be viewed as logically composed of a succession of layers, each wrapping the lower layers and isolating them from higher layers" [Zim80]

Application

Presentation

Session

Transport

Network

Link-Layer-Ctrl Medium-Access

Physical

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

TCP/IP

- IP (Internet Protocol) is the network layer of the Internet
- Transport layer provides reliability, in-order delivery
 - TCP (Transmission Control Protocol) is the most common transport layer
- A lot of networking research (past and present) is centered around TCP/IP

Advantages of Layering

- Handle heterogeneity
- Software reuse, modularity
- Allows extensibility, new technologies

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Summary

- Communication networks:
 - Protocols
- Various levels of communication:
 - Single link: one computer to another (PHY/Link)
 - Shared medium (MAC/Link)
 - Indirect communication: routing (Network)
- The OSI layered reference model
- TCP/IP protocol suite

