

Learning the Forwarding Table

- Manual configuration ==> cumbersome
- Learning:
 - On seeing a frame with a particular source address on an interface, make an entry
 - If no entry exists for a destination, broadcast on all interfaces other than the receiving interface

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Spanning Tree in the Bridged Network

- Define a graph
 - Consider each bridge and each LANsegment as a node
 - And each interface/port as a link
- A spanning tree in this graph is defined
- Which spanning tree?

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Defining the Spanning Tree

- Each bridge has to select its active interfaces
- Define a root bridge: smallest id
 - All of its interfaces are active
- Each bridge computes the shortest path to the root bridge, and notes this interface
- In a LAN segment, a bridge is designated to be responsible for forwarding frames toward the root bridge
 - Closest to the root, smaller-id to break ties

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Spanning Tree Algorithm

- Dynamic, distributed algorithm
- Each bridge starts by thinking itself to be the root
- Configuration messages are sent with: sending bridge's id (Y), id of the node it considers to be the root (X), and the distance from X (d)
- From among the configuration messages sent and received, it stores the "best" configuration

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Spanning Tree: An Example

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Choosing the "Best" Configuration Message

- Among two messages m1 and m2
 - One which identifies a smaller root id is better, or
 - One which has a shorter distance to the root, or
 - One which has a smaller sending bridge id
- Once a bridge identifies itself to be not the root, it stops generating configuration messages
- Root sends configuration messages periodically

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Limitations of Bridging

- Spanning tree algorithm scales linearly
- Broadcast frames are sent everywhere
 - Example: ARP, DHCP

Summary

- Switching: packet, circuit, source routing
- Ethernet bridging
 - Learning bridges
 - Spanning tree protocol

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005