Domain Name System (DNS)

Bhaskaran Raman

Department of CSE, IIT Kanpur

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

DNS Design Goals

- Distributed ownership
- No obvious size limits
- Independent of network topology, capable of other name spaces as well
- OS/Architecture independent

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Domain Name System (DNS)

- Require a name to IP mapping
- History: HOSTS.TXT file used around 1982
- Problems:
 - File became large
 - Higher rate of change
 - Centralized control

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Design Principles

- Hierarchy
 - In name space
 - In management
- Caching
 - Lean service instead of a generic distributed database
 - Digression: Consistency, Availability, Resilience to Partitions - chose any two (CAP principle)

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

DNS Architecture

- Name servers and resolvers
- Variable depth name space: case insensitive
- Decouple tree structure from any semantics
 - For example, in-addr.ama for reverse lookup
 - .com, .edu, .in semantics not known to DNS
- Data attached to names
 - Resource Records (RR)
 - Data type for each record (A record, MX record)

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Some Remarks

- Root server is replicated for availability
- Datagram-based access
- Additional section processing: add unsolicited information to queries
- Beware of misconfigured entries!

Hierarchy and Caching

- DNS zones:
 - Contiguous regions in name space
 - A zone is controlled by an organization
 - Can fork off a portion of a zone to a sub-zone
- A name server can support multiple zones
- Caching:
 - Implemented using Time-To-Live (TTL)
 - Trade-off between consistency and update overhead

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Using DNS for System Break-in

- IP source spoofing attacks possible
- But, authentication is based on host-name, not IP-address
 - E.g., /etc/hosts.equiv or ~/.rhosts used by rsh,
 - Easy break-in, no need for any IP-address spoofing

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Attacking rlogin/rsh

- How do rlogin/rsh work?
 - Incoming connection from 1.2.3.4
 - DNS (reverse) lookup 1.2.3.4
 - Check against ~/.rhosts or /etc/hosts.equiv
- Attack!
 - Return trusted host's name from hacker's domain!
 - Need to know target host, trusted host, user name
 - Easy: use finger, SNMP, email
 - Or, use DNS itself!

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Concluding Remarks

- DNS is the backbone of Internet applications: WWW, Email
- DNS authentication required
- But, DNS not necessarily the issue!
- Cryptographic authentication required in rlogin/rsh or similar applications
- Logs would be useful

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

How to Fix?

- Have rsh/rlogin do forward lookup as well
- Still easy to break: can poison DNS cache!
 - Attacker sends unsolicited A record along with PTR record
- Fix by rejecting A record which arrives along with PTR record?
 - Still, can force a DNS query to hacker's domain

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005